Abstract Floodplain inundation has been viewed as a type of binary process set by the relative elevation between river stage and levee crest. However, recent reports in the literature show that this perception may have limited applicability. In particular, through‐bank channels, conduits that cross the main river levees or banks, facilitate conditions for an “inundation continuum,” or inundation for a range of sub‐bankfull flows. Moreover, through‐bank channels and their networks provide a direct hydraulic connection between the main river and the floodplain interior. We analyzed through‐bank channel structure and floodplain topography and compared them to river surface elevation to provide greater insight on floodplain inundation processes. Results show that well‐developed levees with through‐bank channels facilitate frequent through‐bank inundation. Where levees are poorly developed, floodplain inundation occurs by overbank flow. Therefore, for a given discharge through‐bank and overbank inundation may occur simultaneously. For the Congaree River floodplain, we infer that this dichotomy of inundation processes leads to temporally and spatially complex inundation flow paths for a given river stage. Further, our analyses reveal that the inundation continuum concept should be considered in the context of having vertical, longitudinal, lateral, and temporal components.
more »
« less
This content will become publicly available on December 1, 2025
Flood teleconnections from levees undermine disaster resilience
Inland levees can amplify flood risk in unprotected communities by altering floodwater levels away from their location. While these nonlocal effects of levees, which we term flood teleconnections, have been studied for specific river segments, their impact on flood risks along a river network remains underexplored. By combining data-driven, hydrodynamic, and economic models, we quantify the magnitude, spatial distribution, and economic damages associated with flood teleconnections for a large river network system with extensive levees. We find that due to levees, the 100-year flood inundation extent grows by 25% of the total levee-protected area regionally, and the flood inundation depth increases by up to 2 m at specific locations. Levees also increase the vulnerability of unprotected, marginalized communities to flooding. Our results demonstrate that flood teleconnections are spatially widespread, involve unaccounted costs, and can lead to flood inequities. These findings will be critical to climate adaptation efforts in flood-prone regions.
more »
« less
- Award ID(s):
- 2332169
- PAR ID:
- 10525558
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- npj Natural Hazards
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2948-2100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The elevation of natural river levees can vary considerably along the length of a river, and low‐lying features such as secondary floodplain channels allow for hydrologic exchange between a river and its floodplain over a range of discharges. This hydrologic, “river‐floodplain connectivity” plays a role in attenuating flood waves and transporting fluvial material to floodplain ecosystems. However, flood wave attenuation and transport are also limited by the available storage provided by floodplains. In this study, we explore the combined controls of river‐floodplain connectivity and floodplain width on flood wave attenuation and transport, and how those controls change as flood magnitude increases. We develop idealized river‐floodplain models based on the geometry of the lower Trinity River in Texas, USA, varying floodplain width, peak discharge, and degree of river‐floodplain connectivity, which we prescribe by varying the width of a secondary channel connecting the river to the floodplain. We show that attenuation transitions from connectivity‐limited to storage‐limited as discharge increases. Secondary channel conveyance allows for floodplain inundation at lower discharges, but also fills the floodplain faster and, for larger floods, can cause higher flood peaks downstream. Greater secondary channel conveyance and wider floodplains increase fluxes to the floodplain, but secondary conveyance allows the floodplain to drain faster while wider floodplains have longer average residence times. This study presents a framework for understanding how secondary channel conveyance and floodplain width combine to modulate lateral flow exchange, residence times, and flood wave attenuation, and can guide successful management of river systems and future restoration efforts.more » « less
-
Abstract. Flood-protection levees have been built along rivers and coastlines globally. Current datasets, however, are generally confined to territorial boundaries (national datasets) and are not always easily accessible, posing limitations for hydrologic models and assessments of flood hazard. Here, we bridge this knowledge gap by collecting and standardizing global flood-protection levee data for river deltas into the open-source global river delta levee data environment, openDELvE. In openDELvE, we aggregate levee data from national databases, reports, maps, and satellite imagery. The database identifies the river delta land areas that the levees have been designed to protect. Where data are available, we record the extent and design specifications of the levees themselves (e.g., levee height, crest width, construction material) in a harmonized format. The 1657 polygons of openDELvE contain 19 248 km of levees and 44 733.505 km2 of leveed area. For the 153 deltas included in openDELvE, 17 % of the land area is confined by flood-protection levees. Around 26 % of delta population lives within the 17 % of delta area that is protected, making leveed areas densely populated. openDELvE data can help improve flood exposure assessments, many of which currently do not account for flood-protection levees. We find that current flood hazard assessments that do not include levees may exaggerate the delta flood exposure by 33 % on average, but up to 100 % for some deltas. The openDELvE is made public on an interactive platform (https://www.opendelve.eu/, 1 October 2022), which includes a community-driven revision tool to encourage inclusion of new levee data and continuous improvement and refinement of open-source levee data.more » « less
-
Floods are amplified and attenuated by features and processes across spatial scales, defined here as flood dynamics. We review and synthesise these influences at the catchment, river network and reach scales as a means of integrating understanding of controls on flood dynamics and identifying key questions that arise because of differences in techniques of investigation and disciplinary emphases between spatial scales. Catchment‐scale influences include catchment area, topography, lithology, land cover, precipitation, antecedent conditions and human alterations such as changing land cover. Network‐scale influences on flood dynamics include network topology, longitudinal variations in the geometry of successive river corridor reaches, lakes and wetlands and human alterations including flow regulation and cumulative changes in channel‐floodplain connectivity in multiple reaches across a network. Reach‐scale influences on flood dynamics include water sources, river corridor geometry and connectivity and human alterations such as artificial levees, channelisation, bank stabilisation, changes to floodplain land cover and drainage, dike operation, process‐based river restoration and urban stormwater management. Our review and synthesis of relevant literature suggest that the relative importance of these multiple influences on flood dynamics varies across spatial scales. Hillslope response may dominate hydrograph characteristics in smaller catchments, for example, whereas network geometry and flow dynamics exert progressively stronger influences on flood dynamics with increasing catchment size. Scale‐specific advances in understanding flood dynamics, including rainfall‐runoff analyses of water movements from uplands into channel networks (catchment‐scale), analyses of flow dynamics along networks of multiple channel reaches (network‐scale) and investigations of biophysical feedbacks and the influences of river corridor geometry and hydraulic roughness (reach‐scale), have largely contributed to understanding flood dynamics, but there remain important disconnects between these diverse bodies of research and outstanding questions related to the cumulative effects on flood dynamics across scales.more » « less
-
The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems.more » « less
An official website of the United States government
