skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss that will Impact Ecosystems and Communities
Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snowpacks become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range northward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies.  more » « less
Award ID(s):
1832970
PAR ID:
10387127
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Maier, Thomas
Date Published:
Journal Name:
Northeastern naturalist
Volume:
28
Issue:
Special Issue 11
ISSN:
0310-379X
Page Range / eLocation ID:
180-207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In spite of the mean warming trend over the last few decades and its amplification in the Arctic, some studies have found no robust decline or even a slight increase in wintertime cold air outbreaks over North America. But fossil evidence from warmer paleoclimate periods indicates that the interior of North America never dropped below freezing even in the depths of winter, which implies that the maintenance of cold air outbreaks is unlikely to continue indefinitely with future warming. To identify key mechanisms affecting cold air outbreaks and understand how and why they will change in a warmer climate, we examine the development of North American cold air outbreaks in both a preindustrial and a roughly 8×CO2scenario using the Community Earth System Model, version 2 (CESM2). We observe a sharp drop-off in the wintertime temperature distribution at the freezing temperature, suppressing below-freezing conditions in the warmer climate and above-freezing conditions in the preindustrial case. The disappearance of Arctic sea ice and loss of the near-surface temperature inversion dramatically decrease the availability of below-freezing air in source regions. Using an air parcel trajectory analysis, we demonstrate a remarkable similarity in both the dynamics and diabatic effects acting on cold air masses in the two climate scenarios. Diabatic temperature evolution along cold air outbreak trajectories is a competition between cooling from longwave radiation and warming from boundary layer mixing. Surprisingly, while both diabatic effects strengthen in the warmer climate, the balance remains the same, with a net cooling of about −6 K over 10 days. Significance StatementWe compare a preindustrial climate scenario to a much warmer climate circa the year 2300 under high emissions to understand the physical processes that influence the coldest wintertime temperatures and how they will change with warming. We find that enhanced warming in the Arctic, and particularly over the Arctic Ocean due to the loss of wintertime sea ice, dramatically reduces the availability of cold air to be swept into North America. By tracing these cold air masses as they travel, we also find that they experience the same total amount of cooling in the much warmer climate as they did in the preindustrial climate even though many of the individual heating and cooling processes have gotten stronger. 
    more » « less
  2. Abstract Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record‐breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf‐out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf‐out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land‐cover types to understand how landscape carbon exchange will change under projected climate warming. 
    more » « less
  3. Abstract In recent decades, the interior regions of Eurasia and North America have experienced several unprecedentedly cold winters despite the global surface air temperature increases. One possible explanation of these increasing extreme cold winters comes from the so-called Warm Arctic Cold Continent (WACC) pattern, reflecting the effects of the amplified Arctic warming in driving the circulation change over surrounding continents. This study analyzed reanalysis data and model experiments forced by different levels of anthropogenic forcing. It is found that WACC exists on synoptic scales in observations, model’s historical and even future runs. In the future, the analysis suggests a continued presence of WACC but with a slightly weakened cold extreme due to the overall warming. Warm Arctic events under the warmer climate will be associated with not only a colder continent in East Asia but also a warmer continent, depending on the teleconnection process that is also complicated by the warmer Arctic. Such an increasingly association suggests a reduction in potential predictability of the midlatitude winter anomalies. 
    more » « less
  4. Ai, Zhipin (Ed.)
    Snowpacks are changing in northeastern North America as the regional climate warms, yet the relative influence of changes in precipitation compared to changes in ablation on snowpacks is poorly understood. We use 56 years of weekly snow water equivalent (SWE) measurements from three locations within a study site which vary in elevation and aspect, paired with adjacent daily climate measurements, to investigate relationships between climate and snowpack onset, maximum, and disappearance. Maximum snowpack size and snowpack duration are shrinking at all sites, at rates ranging from 4.3 days/decade at the coldest site to 9.6 days/decade at the warmest site. The shorter snowpack duration at all sites results from an earlier snowpack disappearance, stemming largely from reduced winter maximum snowpack sizes. Trends in snowpack establishment dates vary, with the south-facing site showing a trend toward later establishment but the two north-facing sites showing no change. The date of the maximum snowpack size varies by aspect and elevation but is not changing at any site. Using a 0° C threshold for frozen vs. liquid precipitation, we only observed a decrease in the proportion of precipitation falling in frozen form at the warmer, south-facing site in the winter period. In contrast, the total weekly snowpack ablation in the winter period has been increasing at least marginally at each site, even at sites which do not show increases in thawing conditions. Ablation increases range from 0.4 cm/decade at the warmest site, to 1.4 and 1.2 cm/decade at the north-facing sites. The south-facing site shows only marginally significant trends in total winter ablation, which we interpret as being limited by the smaller snowpack at this site. Overall, we conclude that rising air temperatures are leading to warmer, more sensitive snowpacks and this change becomes evident before those temperatures lead to changes in precipitation form. 
    more » « less
  5. Abstract In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics. 
    more » « less