skip to main content


Title: Exploring Elementary Teachers’ Perceptions of Teaching a Science, Engineering, Mathematics, and Computer Science Project
While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials.  more » « less
Award ID(s):
1742195
NSF-PAR ID:
10387202
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 16th International Conference of the Learning Sciences (ICLS)
Page Range / eLocation ID:
1325-1328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hartshorne, Richard (Ed.)
    Data science and computational thinking (CT) skills are important STEM literacies necessary to make informed daily decisions. In elementary schools, particularly in rural areas, there is little instruction and limited research towards understanding and developing these literacies. Using a Research-Practice Partnership model (RPP; Coburn & Penuel, 2016) we conducted multimethod research investigating nine elementary teachers’ perceptions of data science and related curriculum design during professional development (PD). Connected Learning theory, enhanced with Universal Design for Learning, guided ways we assisted teachers in designing the data science curriculum. Findings suggest teachers maintained high levels of interest in data science instruction and CT before and after the PD and increased their self-efficacy towards teaching data science. A thematic analysis revealed how a data science framework guided curriculum design and assisted teachers in defining, understanding, and co-creating the curriculum. During curriculum design, teachers shared the workload among partners, made collaborative design choices, integrated differentiation strategies, and felt confidence towards teaching data science. Identified challenges included locating data sets and the complexity of understanding data science and related software. This study addresses the research gap in data science education for elementary teachers and assists with successful strategies for data science PD and curricular design. 
    more » « less
  2. Wyoming recently mandated that computer science instruction be provided in K-12 schools by 2022, and there is an urgent need for designing instruction that can integrate computer science into the teaching of other subjects. This project assembles a network improvement community comprised of partners from the University of Wyoming, community colleges, Wyoming school districts, the Wyoming Library System, the Wyoming Department of Education, and local software development firms. The community meets once monthly over the duration of the project to collaborate stakeholder agendas for meeting the project goals. The community enlists K-8 teachers from across the state to experience professional development and collaborate on integrating computer science into their instruction of STEM and social science topics. The project is producing units for teachers, who are implementing these units with support from master teachers and educational scholars. The community serves as a forum for teachers to debrief and learn from each other about ways to improve their instruction and design of the curricular units. Libraries in the state system act as partners for dissemination to rural areas of the innovative instructional approaches. WySLICE prepares 150 K-8 teachers and state librarians from all disciplines to integrate computer science into their teaching. The project is reaching almost half of all K-8 students in Wyoming. The research questions address how teachers use modeling practices as supports for student understanding of algorithms and coding in a variety of ways. The curricula involve cybersecurity as well as other topics relevant to measurement in mathematics and social studies topics that involve social concerns like voting. Data sources include teacher lesson plans and recordings of their instructional implementation, scoring of each of these according to a rubric, meeting notes of monthly meetings, and results from pre-post student assessments. The evaluation focuses on the meeting of project goals and the quality of the management of the network improvement community. This project is jointly funded by CS for All and the Established Program to Stimulate Competitive Research (EPSCoR). This work is supported by the National Science Foundation under DRL Grant #1923542 "CS For All:RPP - Booting Up Computer Science in Wyoming." 
    more » « less
  3. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  4. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findings from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision 
    more » « less
  5. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less