skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PyMVPD: A Toolbox for Multivariate Pattern Dependence
Cognitive tasks engage multiple brain regions. Studying how these regions interact is key to understand the neural bases of cognition. Standard approaches to model the interactions between brain regions rely on univariate statistical dependence. However, newly developed methods can capture multivariate dependence. Multivariate pattern dependence (MVPD) is a powerful and flexible approach that trains and tests multivariate models of the interactions between brain regions using independent data. In this article, we introduce PyMVPD: an open source toolbox for multivariate pattern dependence. The toolbox includes linear regression models and artificial neural network models of the interactions between regions. It is designed to be easily customizable. We demonstrate example applications of PyMVPD using well-studied seed regions such as the fusiform face area (FFA) and the parahippocampal place area (PPA). Next, we compare the performance of different model architectures. Overall, artificial neural networks outperform linear regression. Importantly, the best performing architecture is region-dependent: MVPD subdivides cortex in distinct, contiguous regions whose interaction with FFA and PPA is best captured by different models.  more » « less
Award ID(s):
1943862
PAR ID:
10387315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Neuroinformatics
Volume:
16
ISSN:
1662-5196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Here, we propose a novel technique to investigate nonlinear interactions between brain regions that captures both the strength and type of the functional relationship. Inspired by the field of functional analysis, we propose that the relationship between activity in separate brain areas can be viewed as a point in function space, identified by coordinates along an infinite set of basis functions. Using Hermite polynomials as bases, we estimate a subset of these values that serve as “functional coordinates,” characterizing the interaction between BOLD activity across brain areas. We provide a proof of the convergence of the estimates in the limit, and we validate the method with simulations in which the ground truth is known, additionally showing that functional coordinates detect statistical dependence even when correlations (“functional connectivity”) approach zero. We then use functional coordinates to examine neural interactions with a chosen seed region: the fusiform face area (FFA). Using k-means clustering across each voxel’s functional coordinates, we illustrate that adding nonlinear basis functions allows for the discrimination of interregional interactions that are otherwise grouped together when using only linear dependence. Finally, we show that regions in V5 and medial occipital and temporal lobes exhibit significant nonlinear interactions with the FFA. 
    more » « less
  2. Category selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multicategory information encoded in the brain? Studying the multivariate interactions between brain regions of male and female human subjects with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Adjacent regions show effects for the combination of scenes and each other category, suggesting that scenes provide a context to combine information about the world. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multicategory information is not encoded in a single centralized location, but in multiple distinct brain regions. SIGNIFICANCE STATEMENTMany cognitive tasks require combining information about entities from different categories. However, visual information about different categorical objects is processed by separate, specialized brain regions. How is the joint representation from multiple category-selective regions implemented in the brain? Using fMRI movie data and state-of-the-art multivariate statistical dependence based on artificial neural networks, we identified the angular gyrus encoding responses across face-, body-, artifact-, and scene-selective regions. Further, we showed a cortical map of areas that encode information across different subsets of categories. These findings suggest that multicategory information is not encoded in a single centralized location, but at multiple cortical sites which might contribute to distinct cognitive functions, offering insights to understand integration in a variety of domains. 
    more » « less
  3. Category-selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multi-category information encoded in the brain? Studying the multivariate interactions between brain regions with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multi-category information is not encoded in a single stage at a centralized location, but in multiple distinct brain regions. 
    more » « less
  4. null (Ed.)
    Abstract Across multiple domains of social perception - including social categorization, emotion perception, impression formation, and mentalizing - multivariate pattern analysis (MVPA) of fMRI data has permitted a more detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social perception initially relied on broad structure-function associations derived from univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational relevance of different brain regions, and how MVPA allows explicit tests of the correspondence between psychological models and the neural representation of social information. We also describe current and future advances in methodological approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception. 
    more » « less
  5. Abstract Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area. 
    more » « less