Category selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multicategory information encoded in the brain? Studying the multivariate interactions between brain regions of male and female human subjects with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Adjacent regions show effects for the combination of scenes and each other category, suggesting that scenes provide a context to combine information about the world. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multicategory information is not encoded in a single centralized location, but in multiple distinct brain regions. SIGNIFICANCE STATEMENTMany cognitive tasks require combining information about entities from different categories. However, visual information about different categorical objects is processed by separate, specialized brain regions. How is the joint representation from multiple category-selective regions implemented in the brain? Using fMRI movie data and state-of-the-art multivariate statistical dependence based on artificial neural networks, we identified the angular gyrus encoding responses across face-, body-, artifact-, and scene-selective regions. Further, we showed a cortical map of areas that encode information across different subsets of categories. These findings suggest that multicategory information is not encoded in a single centralized location, but at multiple cortical sites which might contribute to distinct cognitive functions, offering insights to understand integration in a variety of domains.
more »
« less
Angular gyrus responses show joint statistical dependence with brain regions selective for different categories
Category-selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multi-category information encoded in the brain? Studying the multivariate interactions between brain regions with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multi-category information is not encoded in a single stage at a centralized location, but in multiple distinct brain regions.
more »
« less
- Award ID(s):
- 1943862
- PAR ID:
- 10387324
- Date Published:
- Journal Name:
- Conference on Cognitive Computational Neuroscience
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Anterior regions of the ventral visual stream encode substantial information about object categories. Are top-down category-level forces critical for arriving at this representation, or can this representation be formed purely through domain-general learning of natural image structure? Here we present a fully self-supervised model which learns to represent individual images, rather than categories, such that views of the same image are embedded nearby in a low-dimensional feature space, distinctly from other recently encountered views. We find that category information implicitly emerges in the local similarity structure of this feature space. Further, these models learn hierarchical features which capture the structure of brain responses across the human ventral visual stream, on par with category-supervised models. These results provide computational support for a domain-general framework guiding the formation of visual representation, where the proximate goal is not explicitly about category information, but is instead to learn unique, compressed descriptions of the visual world.more » « less
-
The extent that articulatory information embedded in incoming speech contributes to the formation of new perceptual categories for speech sounds has been a matter of discourse for decades. It has been theorized that the acquisition of new speech sound categories requires a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully integrate auditory and articulatory information. However, it is possible that these brain regions are not sensitive specifically to articulatory information, but instead are sensitive to the abstract phonological categories being learned. We tested this hypothesis by training participants over the course of several days on an articulable non-native speech contrast and acoustically matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency with the two sets of stimuli, activation was measured in fMRI as participants passively listened to both sound types. Decoding of category membership for the articulable speech contrast alone revealed a series of left and right hemisphere regions outside of the dorsal stream that have previously been implicated in the emergence of non-native speech sound categories, while no regions could successfully decode the inarticulable nonspeech contrast. Although activation patterns in the left inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), and the supplementary motor area (SMA) provided better information for decoding articulable (speech) sounds compared to the inarticulable (sine wave) sounds, the finding that dorsal stream regions do not emerge as good decoders of the articulable contrast alone suggests that other factors, including the strength and structure of the emerging speech categories are more likely drivers of dorsal stream activation for novel sound learning.more » « less
-
Value-based decision–making involves multiple cortical and subcortical brain areas, but the distributed nature of neurophysiological activity underlying economic choices in the human brain remains largely unexplored. Specifically, the nature of the neurophysiological representation of reward-guided choices, as well as whether they are represented in a subset of reward-related regions or in a more distributed fashion, is unknown. Here, we hypothesize that reward choices, as well as choice-related computations (win probability, risk), are primarily represented in high-frequency neural activity reflecting local cortical processing and that they are highly distributed throughout the human brain, engaging multiple brain regions. To test these hypotheses, we used intracranial recordings from multiple areas (including orbitofrontal, lateral prefrontal, parietal, cingulate cortices as well as subcortical regions such as the hippocampus and amygdala) from neurosurgical patients of both sexes playing a decision-making game. We show that high-frequency activity (HFA; ɣ and HFA) represents both individual choice-related computations (e.g., risk, win probability) and choice information with different prevalence and regional representation. Choice-related computations are locally and unevenly present in multiple brain regions, whereas choice information is widely distributed and more prevalent and appears later across all regions examined. These results suggest brain-wide reward processing, with local HFA reflecting the coalescence of choice-related information into a final choice, and shed light on the distributed nature of neural activity underlying economic choices in the human brain.more » « less
-
Kay, Kendrick (Ed.)A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.more » « less
An official website of the United States government

