skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Respiration, isotope composition, and carbon source partitioning from incubations of soil amended with litter and isotope-labeled lignin
We incubated 10 forest soils (collected from sites across North America, including the Luquillo LTER/CZO) in the laboratory for over two years to quantify the decomposition of carbon derived from added litter and lignin, as well as from extant soil organic matter. Each soil was subjected to two substrate addition treatments: a) litter derived from a C4 grass precipitated with 13C-enriched lignin, or the same C4 grass litter was precipitated with natural-abundance lignin. The concentrations and delta13C composition of carbon dioxide produced from each soil were measured periodically over time and partitioned into sources (soil organic matter, litter, and added lignin) using isotope mixing models. The methods and results are described in detail by a manuscript in Ecology (Hall et al., 2020).  more » « less
Award ID(s):
1802745
PAR ID:
10387387
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (−31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolyticMycenaandKuehneromycesfungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance. 
    more » « less
  2. Litter decomposition determines soil organic matter (SOM) formation and plant‐available nutrient cycles. Therefore, accurate model representation of litter decomposition is critical to improving soil carbon (C) projections of bioenergy feedstocks. Soil C models that simulate microbial physiology (i.e., microbial models) are new to bioenergy agriculture, and their parameterization is often based on small datasets or manual calibration to reach benchmarks. Here, we reparameterized litter decomposition in a microbial soil C model (CORPSE ‐ Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) using the continental‐scale Long‐term Inter‐site Decomposition Experiment Team (LIDET) dataset which documents decomposition across a range of litter qualities over a decade. We conducted a simplified Monte Carlo simulation that constrained parameter values to reduce computational costs. The LIDET‐derived parameters improved modeled C and nitrogen (N) remaining, decomposition rates, and litter mean residence times as compared to Baseline parameters. We applied the LIDET litter decomposition parameters to a microbial bioenergy model (Fixation and Uptake of Nitrogen – Bioenergy Carbon, Rhizosphere, Organisms, and Protection) to examine soil C estimates generated by Baseline and LIDET parameters. LIDET parameters increased estimated soil C in bioenergy feedstocks, with even greater increases under elevated plant inputs (i.e., by increasing residue, N fertilization). This was due to the integrated effects of plant litter quantity, quality, and agricultural practices (tillage, fertilization). Collectively, we developed a simple framework for using large‐scale datasets to inform the parameterization of microbial models that impacts projections of soil C for bioenergy feedstocks. 
    more » « less
  3. Abstract Plant litter decomposition is the breakdown of dead plant biomass by abiotic and biotic means. In terrestrial ecosystems, decomposition regulates the fate of fixed plant carbon, contributing both to its release into the atmosphere and its long-term storage in soil organic matter. In the present article, we revisit four assumptions about decomposition in light of advances in microbiology. First, we consider fungi as primary decomposers, noting bacterial contributions to breaking down lignin and cellulose and overcoming nitrogen limitation. Second, we discuss evidence of the role of microbial communities on litter decomposition, challenging assumptions of microbial redundancy. Third, given these functional consequences of their composition, we examine whether surface litter and bulk soil microbial communities are interchangeable. Finally, we reevaluate the idea that soil organic matter originates from plant litter, emphasizing the pivotal role of microbial necromass. We highlight the importance of integrating microbiological findings into ecosystem ecology to accelerate research on carbon cycling in terrestrial ecosystems. 
    more » « less
  4. Abstract Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems. 
    more » « less
  5. Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular‐level data (based on nuclear magnetic resonance and specific analysis of plant‐ and microbial‐derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long‐term soil priming. The degree of SOM decomposition was higher for bacteria‐dominated sites with higher nitrogen (N) availability while lower for the N‐poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular‐level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers. 
    more » « less