Abstract In this paper, we develop the Riemann–Hilbert approach to the inverse scattering transform (IST) for the complex coupled short‐pulse equation on the line with zero boundary conditions at space infinity, which is a generalization of recent work on the scalar real short‐pulse equation (SPE) and complex short‐pulse equation (cSPE). As a byproduct of the IST, soliton solutions are also obtained. As is often the case, the zoology of soliton solutions for the coupled system is richer than in the scalar case, and it includes both fundamental solitons (the natural, vector generalization of the scalar case), and fundamental breathers (a superposition of orthogonally polarized fundamental solitons, with the same amplitude and velocity but having different carrier frequencies), as well as composite breathers, which still correspond to a minimal set of discrete eigenvalues but cannot be reduced to a simple superposition of fundamental solitons. Moreover, it is found that the same constraint on the discrete eigenvalues which leads to regular, smooth one‐soliton solutions in the complex SPE, also holds in the coupled case, for both a single fundamental soliton and a single fundamental breather, but not, in general, in the case of a composite breather.
more »
« less
Analytical construction of soliton families in one‐ and two‐dimensional nonlinear Schrödinger equations with nonparity‐time‐symmetric complex potentials
Abstract The existence of soliton families in nonparity‐time‐symmetric complex potentials remains poorly understood, especially in two spatial dimensions. In this article, we analytically investigate the bifurcation of soliton families from linear modes in one‐ and two‐dimensional nonlinear Schrödinger equations with localized Wadati‐type nonparity‐time‐symmetric complex potentials. By utilizing the conservation law of the underlying non‐Hamiltonian wave system, we convert the complex soliton equation into a new real system. For this new real system, we perturbatively construct a continuous family of low‐amplitude solitons bifurcating from a linear eigenmode to all orders of the small soliton amplitude. Hence, the emergence of soliton families in these nonparity‐time‐symmetric complex potentials is analytically explained. We also compare these analytically constructed soliton solutions with high‐accuracy numerical solutions in both one and two dimensions, and the asymptotic accuracy of these perturbation solutions is confirmed.
more »
« less
- Award ID(s):
- 1910282
- PAR ID:
- 10387488
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Studies in Applied Mathematics
- Volume:
- 147
- Issue:
- 1
- ISSN:
- 0022-2526
- Format(s):
- Medium: X Size: p. 4-31
- Size(s):
- p. 4-31
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we discuss an application of the “inverse problem” method to find the external trapping potential, which has particular N trapped soliton-like solutions of the Gross–Pitaevskii equation (GPE) also known as the cubic nonlinear Schrödinger equation (NLSE). This inverse method assumes particular forms for the trapped soliton wave function, which then determines the (unique) external (confining) potential. The latter renders these assumed waveforms exact solutions of the GPE (NLSE) for both attractive (g<0) and repulsive (g>0) self-interactions. For both signs of g, we discuss the stability with respect to self-similar deformations and translations. For g<0, a critical mass Mc or equivalently the number of particles for instabilities to arise can often be found analytically. On the other hand, for the case with g>0 corresponding to repulsive self-interactions which is often discussed in the atomic physics realm of Bose–Einstein condensates, the bound solutions are found to be always stable. For g<0, we also determine the critical mass numerically by using linear stability or Bogoliubov–de Gennes analysis, and compare these results with our analytic estimates. Various analytic forms for the trapped N-soliton solutions in one, two, and three spatial dimensions are discussed, including sums of Gaussians or higher-order eigenfunctions of the harmonic oscillator Hamiltonian.more » « less
-
Abstract We combine experimental, numerical, and analytical tools to design highly nonlinear mechanical metamaterials that exhibit a new phenomenon: gaps in amplitude for elastic vector solitons (i.e., ranges in amplitude where elastic soliton propagation is forbidden). Such gaps are fundamentally different from the spectral gaps in frequency typically observed in linear phononic crystals and acoustic metamaterials and are induced by the lack of strong coupling between the two polarizations of the vector soliton. We show that the amplitude gaps are a robust feature of our system and that their width can be controlled both by varying the structural properties of the units and by breaking the symmetry in the underlying geometry. Moreover, we demonstrate that amplitude gaps provide new opportunities to manipulate highly nonlinear elastic pulses, as demonstrated by the designed soliton splitters and diodes.more » « less
-
Abstract The complex coupled short‐pulse equation (ccSPE) describes the propagation of ultrashort optical pulses in nonlinear birefringent fibers. The system admits a variety of vector soliton solutions: fundamental solitons, fundamental breathers, composite breathers (generic or nongeneric), as well as so‐called self‐symmetric composite solitons. In this work, we use the dressing method and the Darboux matrices corresponding to the various types of solitons to investigate soliton interactions in the focusing ccSPE. The study combines refactorization problems on generators of certain rational loop groups, and long‐time asymptotics of these generators, as well as the main refactorization theorem for the dressing factors that leads to the Yang–Baxter property for the refactorization map and the vector soliton interactions. Among the results obtained in this paper, we derive explicit formulas for the polarization shift of fundamental solitons that are the analog of the well‐known formulas for the interaction of vector solitons in the Manakov system. Our study also reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather and, conversely, that the interaction of two fundamental breathers generically yields two fundamental breathers with a polarization shifts, but may also result into a fundamental soliton and a fundamental breather. Explicit formulas for the coefficients that characterize the fundamental breathers, as well as for their polarization vectors are obtained. The interactions of other types of solitons are also derived and discussed in detail and illustrated with plots. New Yang–Baxter maps are obtained in the process.more » « less
-
Resonant Y-shaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully two-dimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a one-dimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the one-dimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, V-shaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation.more » « less
An official website of the United States government
