skip to main content


Search for: All records

Award ID contains: 1910282

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We show that new types of rogue wave patterns exist in integrable systems, and these rogue patterns are described by root structures of Okamoto polynomial hierarchies. These rogue patterns arise when the τ functions of rogue wave solutions are determinants of Schur polynomials with index jumps of three, and an internal free parameter in these rogue waves gets large. We demonstrate these new rogue patterns in the Manakov system and the three‐wave resonant interaction system. For each system, we derive asymptotic predictions of its rogue patterns under a large internal parameter through Okamoto polynomial hierarchies. Unlike the previously reported rogue patterns associated with the Yablonskii–Vorob'ev hierarchy, a new feature in the present rogue patterns is that the mapping from the root structure of Okamoto‐hierarchy polynomials to the shape of the rogue pattern is linear only to the leading order, but becomes nonlinear to the next order. As a consequence, the current rogue patterns are often deformed, sometimes strongly deformed, from Okamoto‐hierarchy root structures, unless the underlying internal parameter is very large. Our analytical predictions of rogue patterns are compared to true solutions, and excellent agreement is observed, even when rogue patterns are strongly deformed from Okamoto‐hierarchy root structures.

     
    more » « less
  2. Abstract

    The existence of soliton families in nonparity‐time‐symmetric complex potentials remains poorly understood, especially in two spatial dimensions. In this article, we analytically investigate the bifurcation of soliton families from linear modes in one‐ and two‐dimensional nonlinear Schrödinger equations with localized Wadati‐type nonparity‐time‐symmetric complex potentials. By utilizing the conservation law of the underlying non‐Hamiltonian wave system, we convert the complex soliton equation into a new real system. For this new real system, we perturbatively construct a continuous family of low‐amplitude solitons bifurcating from a linear eigenmode to all orders of the small soliton amplitude. Hence, the emergence of soliton families in these nonparity‐time‐symmetric complex potentials is analytically explained. We also compare these analytically constructed soliton solutions with high‐accuracy numerical solutions in both one and two dimensions, and the asymptotic accuracy of these perturbation solutions is confirmed.

     
    more » « less
  3. null (Ed.)
    Abstract General rogue waves in (1+1)-dimensional three-wave resonant interaction systems are derived by the bilinear method. These solutions are divided into three families, which correspond to a simple root, two simple roots and a double root of a certain quartic equation arising from the dimension reduction, respectively. It is shown that while the first family of solutions associated with a simple root exists for all signs of the nonlinear coefficients in the three-wave interaction equations, the other two families of solutions associated with two simple roots and a double root can only exist in the so-called soliton-exchange case, where the nonlinear coefficients have certain signs. Many of these rogue wave solutions, such as those associated with two simple roots, the ones generated by a $2\times 2$ block determinant in the double-root case, and higher-order solutions associated with a simple root, are new solutions which have not been reported before. Technically, our bilinear derivation of rogue waves for the double-root case is achieved by a generalization to the previous dimension reduction procedure in the bilinear method, and this generalized procedure allows us to treat roots of arbitrary multiplicities. Dynamics of the derived rogue waves is also examined, and new rogue wave patterns are presented. Connection between these bilinear rogue waves and those derived earlier by Darboux transformation is also explained. 
    more » « less
  4. null (Ed.)