skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Pliocene Precipitation Isotope Proxy‐Model Comparison Assessing the Hydrological Fingerprints of Sea Surface Temperature Gradients
Abstract The Pliocene offers insights into future climate, with near‐modern atmospheric pCO2and global mean surface temperature estimated to be 3–4°C above pre‐industrial. However, the hydrological response differs between future global warming and early Pliocene climate model simulations. This discrepancy results from the use of reduced meridional and zonal sea surface temperature (SST) gradients, based on foraminiferal Mg/Ca and Alkenone proxy evidence, to force the early Pliocene simulation. Subsequent, SST reconstructions based on the organic proxy TEX86, have found warmer temperatures in the warm pool, bringing the magnitude of the gradient reductions into dispute. We design an independent test of Pliocene SST scenarios and their hydrological cycle “fingerprints.” We use an isotope‐enabled General Circulation Model, iCAM5, to model the distribution of water isotopes in precipitation in response to four climatological SST and sea‐ice fields representing modern, abrupt 4 × CO2, late Pliocene and early Pliocene climates. We conduct a proxy‐model comparison with all the available precipitation isotope proxy data, and we identify target regions that carry precipitation isotopic fingerprints of SST gradients as priorities for additional proxy reconstructions. We identify two regions with distinct precipitation isotope (D/H) fingerprints resulting from reduced SST gradients: the Maritime Continent (D‐enriched due to reduced convective rainfall) and the Sahel (wetter, more deep convection, D‐depleted). The proxy‐model comparison using available plant wax reconstructions, mostly from Africa, is promising but inconclusive. Additional proxy reconstructions are needed in both target regions and in much of the world for significant tests of SST scenarios and dynamical linkages to the hydrological cycle.  more » « less
Award ID(s):
2103055 2002448 1844380 1903650
PAR ID:
10387549
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
12
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The early‐to mid‐Pliocene (5.3–3 Ma), characterized by warmer temperatures and similar CO2concentrations to present day, is considered a useful analog for future warming scenarios. Geological evidence suggests that during the Pliocene, many modern‐day desert regions received higher levels of rainfall and supported large perennial lakes and wetter vegetation types. These wetter conditions have been difficult to reconcile with model predictions of 21st century drying over most subtropical land regions. Using an atmospheric General Circulation Model, we show that underestimates of Pliocene rainfall over certain areas in models may be related to insufficient sea surface temperature (SST) warmth simulated over relatively local eastern boundary current regions. When SSTs off the coast of California are raised to more closely match some proxy reconstructions, rainfall increases over much of adjacent western North America. Over the southwestern USA, this increased rainfall is mainly due to a convergent monsoonal circulation that develops over late boreal summer. A smaller wintertime increase in precipitation also occurs due to differences in rainfall associated with midlatitude cyclones. Wetter land conditions are expected to weaken upwelling‐favorable coastal winds, so that increased rainfall caused by coastal SST warming suggests a positive feedback that could help sustain wet, Pliocene‐like conditions. 
    more » « less
  2. Abstract The Miocene (23.03–5.33 Ma) is recognized as a period with close to modern‐day paleogeography, yet a much warmer climate. With large uncertainties in future hydroclimate projections, Miocene conditions illustrate a potential future analog for the Earth system. A recent opportunistic Miocene Model Intercomparison Project 1 (MioMIP1) focused on synthesizing published Miocene climate simulations and comparing them with available temperature reconstructions. Here, we build on this effort by analyzing the hydrological cycle response to Miocene forcings across early‐to‐middle (E2MMIO; 20.03–11.6 Ma) and middle‐to‐late Miocene (M2LMIO; 11.5–5.33 Ma) simulations with CO2concentrations ranging from 200 to 850 ppm and providing a model‐data comparison against available precipitation reconstructions. We find global precipitation increases by ∼2.1 and 2.3% per degree of warming for E2MMIO and M2LMIO simulations, respectively. Models generally agree on a wetter than modern‐day tropics; mid and high‐latitude, however, do not agree on the sign of subtropical precipitation changes with warming. Global monsoon analysis suggests most monsoon regions, except the North American Monsoon, experience higher precipitation rates under warmer conditions. Model‐data comparison shows that mean annual precipitation is underestimated by the models regardless of CO2concentration, particularly in the mid‐ to high‐latitudes. This suggests that the models may not be (a) resolving key processes driving the hydrological cycle response to Miocene boundary conditions and/or (b) other boundary conditions or processes not considered here are critical to reproducing Miocene hydroclimate. This study highlights the challenges in modeling and reconstructing the Miocene hydrological cycle and serves as a baseline for future coordinated MioMIP efforts. 
    more » « less
  3. Abstract During the Middle Miocene Climate Transition (MMCT; ∼14.7–13.8 Ma), the global climate experienced rapid cooling, leading to modern‐like temperatures, precipitation patterns, and permanent ice sheets. However, proxy records indicate that atmospheric pCO2and regional climate conditions (SST, ice volume) were highly variable from 17 to 12.5 Ma and these changes were not always synchronous. Here, we report on a series of middle Miocene (∼16–12.5 Ma) simulations using the water isotope enabled earth system model (iCESM1.2) to explore the potential for multiple equilibrium states to explain the observed decoupling between pCO2and regional climates. Our simulations indicate that initial ocean conditions can significantly influence deep water formation in the North Atlantic and lead to multiple ocean equilibria. When the model is initiated from a cold state, residual cool surface water temperatures in the North Atlantic intensify Atlantic Meridional Ocean Circulation (AMOC) and inhibit Arctic sea‐ice formation. When initiated from a warm state, the AMOC remains weak. The different ocean states drive differences in equator‐to‐pole sea surface temperature gradients and sea ice distributions through heat redistribution changes. These equilibria cause variations in temperature gradients and sea ice distribution due to changes in heat redistribution. Additionally, changes in ocean circulation and a reduced temperature gradient in the North Atlantic increase North Atlantic precipitation when the AMOC is strong. These findings underscore the importance of the ocean's initial state in shaping regional climate responses to atmospheric pCO2, potentially explaining regional climate pattern variability observed during the Miocene. 
    more » « less
  4. Abstract Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. 
    more » « less
  5. Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022). 
    more » « less