skip to main content


Title: H-FISTA: a hierarchical algorithm for phase retrieval with application to pulsar dynamic spectra
ABSTRACT

A pulsar dynamic spectrum is an inline digital hologram of the interstellar medium; it encodes information on the propagation paths by which signals have travelled from source to telescope. To decode the hologram, it is necessary to ‘retrieve’ the phases of the wavefield from intensity measurements, which directly gauge only the field modulus, by imposing additional constraints on the model. We present a new method for phase retrieval in the context of pulsar spectroscopy. Our method makes use of the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) to obtain sparse models of the wavefield in a hierarchical approach with progressively increasing depth. Once the tail of the noise distribution is reached the hierarchy terminates with a final, unregularized optimization. The result is a fully dense model of the complex wavefield that permits the discovery of faint signals by appropriate averaging. We illustrate the performance of our method on synthetic test cases and on real data. Our algorithm, which we call H-FISTA, is implemented in the python programming language and is freely available.

 
more » « less
NSF-PAR ID:
10387553
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1261-1276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrasound data from arrays can be used to detect, locate, and quantify a variety of natural and anthropogenic sources from local to remote distances. However, many array processing methods use a single broad frequency range to process the data, which can lead to signals of interest being missed due to the choice of frequency limits or simultaneous clutter sources. We introduce a new open-source Python code that processes infrasound array data in multiple sequential narrow frequency bands using the least-squares approach. We test our algorithm on a few examples of natural sources (volcanic eruptions, mass movements, and bolides) for a variety of array configurations. Our method reduces the need to choose frequency limits for processing, which may result in missed signals, and it is parallelized to decrease the computational burden. Improvements of our narrow-band least-squares algorithm over broad-band least-squares processing include the ability to distinguish between multiple simultaneous sources if distinct in their frequency content (e.g., microbarom or surf vs. volcanic eruption), the ability to track changes in frequency content of a signal through time, and a decreased need to fine-tune frequency limits for processing. We incorporate a measure of planarity of the wavefield across the array (sigma tau, στ) as well as the ability to utilize the robust least trimmed squares algorithm to improve signal processing and insight into array performance. Our implementation allows for more detailed characterization of infrasound signals recorded at arrays that can improve monitoring and enhance research capabilities. 
    more » « less
  2. In many real-world applications of monitoring multivariate spatio-temporal data that are non-stationary over time, one is often interested in detecting hot-spots with spatial sparsity and temporal consistency, instead of detecting system-wise changes as in traditional statistical process control (SPC) literature. In this paper, we propose an efficient method to detect hot-spots through tensor decomposition, and our method has three steps. First, we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model that serves as a dimension reduction and de-noising technique: it is an additive model decomposing the original data into: smooth but non-stationary global mean, sparse local anomalies, and random noises. Next, we estimate model parameters by the penalized framework that includes Least Absolute Shrinkage and Selection Operator (LASSO) and fused LASSO penalty. An efficient recursive optimization algorithm is developed based on Fast Iterative Shrinkage Thresholding Algorithm (FISTA). Finally, we apply a Cumulative Sum (CUSUM) Control Chart to monitor model residuals after removing global means, which helps to detect when and where hot-spots occur. To demonstrate the usefulness of our proposed SSD-Tensor method, we compare it with several other methods including scan statistics, LASSO-based, PCA-based, T2-based control chart in extensive numerical simulation studies and a real crime rate dataset. 
    more » « less
  3. Summary

    In this paper, we propose an efficient numerical scheme for solving some large‐scale ill‐posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix–matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage‐thresholding algorithm (FISTA) to solve the resulting optimization problem. Because the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplication algorithms at each iteration. The proposed algorithm is thus calledstructuredFISTA (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA.

     
    more » « less
  4. Abstract

    The phenomenon of pulsar nulling, observed as the temporary inactivity of a pulsar, remains poorly understood both observationally and theoretically. Most observational studies that quantify nulling employ a variant of Ritchings algorithm, which can suffer significant biases for pulsars where the emission is weak. Using a more robust mixture model method, we study pulsar nulling in a sample of 22 recently discovered pulsars, for which we publish the nulling fractions for the first time. These data clearly demonstrate biases of the former approach and show how an otherwise nonnulling pulsar can be classified as having significant nulls. We show that the population-wide studies that find a positive correlation of nulling with pulsar period/characteristic age can similarly be biased because of the bias in estimating the nulling fraction. We use our probabilistic approach to find the evidence for periodicity in the nulls in a subset of three pulsars in our sample. In addition, we also provide improved timing parameters for 17 of the 22 pulsars that had no prior follow-up.

     
    more » « less
  5. Abstract

    Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived from the connection between acceleration mechanism andA-stability of ODE solvers, and the exponential decay of a tailored Lyapunov function along with the solution trajectory is proved. Numerical discretizations of NAG flow are then considered and convergence rates are established via a discrete Lyapunov function. The proposed differential equation solver approach can not only cover existing accelerated methods, such as FISTA, Güler’s proximal algorithm and Nesterov’s accelerated gradient method, but also produce new algorithms for composite convex optimization that possess accelerated convergence rates. Both the convex and the strongly convex cases are handled in a unified way in our approach.

     
    more » « less