Abstract Mafic intrusions, lava flows, and felsic plutons in southwestern Laurentia have been hypothesized to be associated with the emplacement of a late Mesoproterozoic (Stenian Period) large igneous province. Improved geochronologic data resolve distinct episodes of mafic magmatism in the region. The ca. 1,098 Ma main pulse of southwestern Laurentia large igneous province (SWLLIP) magmatism is recorded by mafic intrusions across southeastern California to central Arizona. A younger episode of volcanism resulted in eruptions that formed the ca. 1,082 Ma Cardenas Basalt, which is the uppermost unit of the Unkar Group in the Grand Canyon. With the updated geochronological constraints, we develop new paleomagnetic data from mafic sills in the SWLLIP. Overlapping poles between the Death Valley sills and rocks of similar age in the Midcontinent Rift are inconsistent with large‐scale Cenozoic vertical axis rotations in Death Valley. We also develop a new paleomagnetic pole from the ca. 1,082 Ma Cardenas Basalt (pole longitude = 183.9°E, pole latitude = 15.9°N, = 7.4°,N = 18). The new paleomagnetic data are consistent with the pole path developed from time‐equivalent rocks of the Midcontinent Rift, supporting interpretations that changing pole positions are the result of rapid equatorward motion. These data add to the record of Laurentia's rapid motion from ca. 1,110 to 1,080 Ma that culminated in collisional Grenvillian orogenesis and the assembly of Rodinia.
more »
« less
The Paleogeography of Laurentia in Its Early Years: New Constraints From the Paleoproterozoic East‐Central Minnesota Batholith
Abstract Theca. 1.83 Ga Trans‐Hudson orogeny resulted from collision of an upper plate consisting of the Hearne, Rae, and Slave provinces with a lower plate consisting of the Superior province. While the geologic record ofca. 1.83 Ga peak metamorphism within the orogen suggests that these provinces were a single amalgamated craton from this time onward, a lack of paleomagnetic poles from the Superior province following Trans‐Hudson orogenesis has made this coherency difficult to test. We develop a high‐quality paleomagnetic pole for northeast‐trending diabase dikes of the post‐Penokean orogen East‐Central Minnesota Batholith (pole longitude: 265.8°; pole latitude: 20.4°; A95: 4.5°; K: 45.6 N: 23) whose age we constrain to be 1,779.1 ± 2.3 Ma (95% CI) with new U‐Pb dates. Demagnetization and low‐temperature magnetometry experiments establish dike remanence be held by low‐Ti titanomagnetite. Thermochronology data constrain the intrusions to have cooled below magnetite blocking temperatures upon initial emplacement with a mild subsequent thermal history within the stable craton. The similarity of this new Superior province pole with poles from the Slave and Rae provinces establishes the coherency of Laurentia following Trans‐Hudson orogenesis. This consistency supports interpretations that older discrepant 2.22–1.87 Ga pole positions between the provinces are the result of differential motion through mobile‐lid plate tectonics. The new pole supports the northern Europe and North America connection between the Laurentia and Fennoscandia cratons. The pole can be used to jointly reconstruct these cratonsca. 1,780 Ma strengthening the paleogeographic position of these major constituents of the hypothesized late Paleoproterozoic supercontinent Nuna.
more »
« less
- PAR ID:
- 10387608
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Tectonics
- Volume:
- 40
- Issue:
- 5
- ISSN:
- 0278-7407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The paleogeography of Laurentia throughout the Neoproterozoic is critical for reconstructing global paleogeography due to its central position in the supercontinent Rodinia. We develop a new paleomagnetic pole from red siltstones and fine‐grained sandstones of the early Neoproterozoic Jacobsville Formation which is now constrained to be ca. 990 Ma in age. High‐resolution thermal demagnetization experiments resolve detrital remanent magnetizations held by hematite. These directions were reoriented within siltstone intraclasts and pass intraformational conglomerate tests—giving confidence that the magnetization is detrital and primary. An inclination‐corrected mean paleomagnetic pole position for the Jacobsville Formation indicates that Laurentia's motion slowed down significantly following the onset of the Grenvillian orogeny. Prior rapid plate motion associated with closure of the Unimos Ocean between 1,110 and 1,090 Ma transitioned to slow drift of Laurentia across the equator in the late Mesoproterozoic to early Neoproterozoic. We interpret the distinct position of this well‐dated pole from those in the Grenville orogen that have been assigned a similar age to indicate that the ages of the poles associated with the Grenville Loop likely need to be revised to be younger due to prolonged exhumation.more » « less
-
Abstract The occurrence of plate tectonic processes on Earth during the Paleoproterozoic is supported by ca. 2.2–1.8 Ga subduction‐collision orogens associated with the assembly of the Columbia‐Nuna supercontinent. Subsequent supercontinent breakup is evidence by global ca. 1.8–1.6 Ga large igneous provinces. The North China craton is notable for containing Paleoproterozoic orogens along its margins, herein named the Northern Margin orogen, yet the nature and timing of orogenic and extensional processes of these orogens and their role in the supercontinent cycle remain unclear. In this contribution, we present new field observations, U‐Pb zircon and baddeleyite geochronology dates, and major/trace‐element and isotope geochemical analyses from the northern margin of the North China craton that detail its Paleoproterozoic tectonic and magmatic history. Specifically, we record the occurrence of ca. 2.2–2.0 Ga magmatic arc rocks, ca. 1.9–1.88 Ga tectonic mélange and mylonitic shear zones, and folded lower Paleoproterozoic strata. These rocks were affected by ca. 1.9–1.8 Ga granulite‐facies metamorphism and ca. 1.87–1.78 Ga post‐collisional, extension‐related magmatism along the cratonal northern margin. We interpret that the generation and emplacement of these rocks, and the coupled metamorphic and magmatic processes, were related to oceanic subduction and subsequent continent‐continent collision during the Paleoproterozoic. The occurrence of ca. 1.77–1.73 Ga mafic dykes and ca. 1.75 Ga mylonitic shear zones along the northern margin of the North China craton may have been related to a regional mantle plume event. Our results are consistent with modern style plate tectonics, including oceanic subduction‐related plate convergence and continent‐continent collision, operating in the Paleoproterozoic.more » « less
-
Abstract Apparent polar wander paths (APWPs) synthesized from paleomagnetic poles provide the most direct data for reconstructing past paleogeography and plate motions for times earlier than ca. 200 Ma. In this contribution, we describe a new method for APWP synthesis that extends the paleomagnetic Euler pole analysis of Gordon et al. (1984,https://doi.org/10.1029/TC003i005p00499) by placing it within the framework of a Bayesian inverse problem. This approach incorporates uncertainties in pole positions and age that are often ignored in standard treatments. The paleomagnetic Euler poles resulting from the inversions provide estimates for full‐vector plate motion (both latitude and longitude) and associated uncertainty. The method allows for inverting for one or more Euler poles with the timing of changepoints being solved as part of the inversion. In addition, the method allows the incorporation of true polar wander rotations, thus providing an avenue for probabilistic partitioning of plate tectonic motion and true polar wander based on paleomagnetic poles. We show example inversions on synthetic data to demonstrate the method's capabilities. We illustrate application of the method to Cenozoic Australia paleomagnetic poles which can be compared to independent plate reconstructions. A two‐Euler pole inversion for the Australian record recovers northward acceleration of Australia in the Eocene with rates that are consistent with plate reconstructions. We also apply the method to constrain rapid rates of motion for cratonic North America associated with the Keweenawan Track of late Mesoproterozoic paleomagnetic poles. The application of Markov chain Monte Carlo methods to estimate paleomagnetic Euler poles can open new directions in quantitative paleogeography.more » « less
-
Abstract The location of the West African craton (WAC) has been poorly constrained in the Paleoproterozoic–Mesoproterozoic supercontinent Nuna (also known as Columbia). Previous Nuna reconstruction models suggested that the WAC was connected to Amazonia in a way similar to their relative position in Gondwana. By an integrated paleomagnetic and geochronological study of the Proterozoic mafic dikes in the Anti-Atlas Belt, Morocco, we provide two reliable paleomagnetic poles to test this connection. Incorporating our new poles with quality-filtered poles from the neighboring cratons of the WAC, we propose an inverted WAC-Amazonia connection, with the northern WAC attached to northeastern Amazonia, as well as a refined configuration of Nuna. Global large igneous province records also conform to our new reconstruction. The inverted WAC-Amazonia connection suggests a substantial change in their relative orientation from Nuna to Gondwana, providing an additional example of large-magnitude cumulative azimuthal rotations between adjacent continental blocks over supercontinental cycles.more » « less
An official website of the United States government
