Integral controller is widely used in industry for its capability of endowing perfect adaptation to disturbances. To harness such capability for precise gene expression regulation, synthetic biologists have endeavoured in building biomolecular (quasi-)integral controllers, such as the antithetic integral controller. Despite demonstrated successes, challenges remain with designing the controller for improved transient dynamics and adaptation. Here, we explore and investigate the design principles of alternative RNA-based biological controllers, by modifying an antithetic integral controller with prevalently found natural feed-forward loops (FFL), to improve its transient dynamics and adaptation performance. With model-based analysis, we demonstrate that while the base antithetic controller shows excellent responsiveness and adaptation to system disturbances, incorporating the type-1 incoherent FFL into the base antithetic controller could attenuate the transient dynamics caused by changes in the stimuli, especially in mitigating the undesired overshoot in the output gene expression. Further analysis on the kinetic parameters reveals similar findings to previous studies that the degradation and transcription rates of the circuit RNA species would dominate in shaping the performance of the controllers.
more »
« less
Internal models in control, bioengineering, and neuroscience
Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions.
more »
« less
- Award ID(s):
- 1849588
- PAR ID:
- 10387640
- Date Published:
- Journal Name:
- Annual review of control robotics and autonomous systems
- Volume:
- 5
- Issue:
- 20
- ISSN:
- 2573-5144
- Page Range / eLocation ID:
- 20.1-20.25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Perfect adaptation, the ability to regulate and maintain gene expression to its desired value despite disturbances, is important in the development of organisms. Building biological controllers to endow engineered biological systems with such perfect adaptation capability is a key goal in synthetic biology. Model-guided exploration of such synthetic circuits has been effective in designing such systems. However, theoretical analysis to guarantee controller properties with nonlinear models, such as Hill functions, remains challenging, while use of linear models fails to capture the inherent nonlinear dynamics of gene expression systems. Here, we propose a reverse engineering approach to infer the kinetic parameters for nonlinear Hill function-type models from analysis of linear models and apply our method to design controllers, which achieve perfect adaptation. Focusing on three biological network motif-based controllers, we demonstrate via simulation the efficacy of the proposed approach in combining linear system theories with nonlinear modelling, to design multiple gene circuits that could deliver perfect adaptation. Given the ubiquitous use of Hill functions in describing the dynamics of biological regulatory networks, we anticipate the proposed reverse engineering approach to benefit a wide range of systems and synthetic biology applications.more » « less
-
null (Ed.)One major challenge in synthetic biology is the deleterious impacts of cellular stress caused by expression of heterologous pathways, sensors, and circuits. Feedback control and dynamic regulation are broadly proposed strategies to mitigate this cellular stress by optimizing gene expression levels temporally and in response to biological cues. While a variety of approaches for feedback implementation exist, they are often complex and cannot be easily manipulated. Here, we report a strategy that uses RNA transcriptional regulators to integrate additional layers of control over the output of natural and engineered feedback responsive circuits. Called riboregulated switchable feedback promoters (rSFPs), these gene expression cassettes can be modularly activated using multiple mechanisms, from manual induction to autonomous quorum sensing, allowing control over the timing, magnitude, and autonomy of expression. We develop rSFPs in Escherichia coli to regulate multiple feedback networks and apply them to control the output of two metabolic pathways. We envision that rSFPs will become a valuable tool for flexible and dynamic control of gene expression in metabolic engineering, biological therapeutic production, and many other applications.more » « less
-
One important characteristic of single-cell RNA sequencing (scRNA-seq) data is its high sparsity, where the gene-cell count data matrix contains high proportion of zeros. The sparsity has motivated widespread discussions on dropouts and missing data, as well as imputation algorithms of scRNA-seq analysis. Here, we aim to investigate whether there exist genes that are more prone to be under-detected in scRNA-seq, and if yes, what commonalities those genes may share. From public data sources, we gathered paired bulk RNA-seq and scRNA-seq data from 53 human samples, which were generated in diverse biological contexts. We derived pseudo-bulk gene expression by averaging the scRNA-seq data across cells. Comparisons of the paired bulk and pseudo-bulk gene expression profiles revealed that there indeed exists a collection of genes that are frequently under-detected in scRNA-seq compared to bulk RNA-seq. This result was robust to randomization when unpaired bulk and pseudo-bulk gene expression profiles were compared. We performed motif search to the last 350 bp of the identified genes, and observed an enrichment of poly(T) motif. The poly(T) motif toward the tails of those genes may be able to form hairpin structures with the poly(A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts to be captured during scRNA-seq library preparation, which is a mechanistic conjecture of why certain genes may be more prone to be under-detected in scRNA-seq.more » « less
-
Signal processing is critical to a myriad of biological phenomena (natural and engineered) that involve gene regulation. Biological signal processing can be achieved by way of allosteric transcription factors. In canonical regulatory systems (e.g., the lactose repressor), an INPUT signal results in the induction of a given transcription factor and objectively switches gene expression from an OFF state to an ON state. In such biological systems, to revert the gene expression back to the OFF state requires the aggressive dilution of the input signal, which can take 1 or more d to achieve in a typical biotic system. In this study, we present a class of engineered allosteric transcription factors capable of processing two-signal INPUTS, such that a sequence of INPUTS can rapidly transition gene expression between alternating OFF and ON states. Here, we present two fundamental biological signal processing filters, BANDPASS and BANDSTOP, that are regulated by D-fucose and isopropyl-β-D-1-thiogalactopyranoside. BANDPASS signal processing filters facilitate OFF–ON–OFF gene regulation. Whereas, BANDSTOP filters facilitate the antithetical gene regulation, ON–OFF–ON. Engineered signal processing filters can be directed to seven orthogonal promoters via adaptive modular DNA binding design. This collection of signal processing filters can be used in collaboration with our established transcriptional programming structure. Kinetic studies show that our collection of signal processing filters can switch between states of gene expression within a few minutes with minimal metabolic burden—representing a paradigm shift in general gene regulation.more » « less
An official website of the United States government

