skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of Belonging among Underrepresented Undergraduates in STEM Majors: Comparison of Former Transfer and non-Transfer Students
The transfer pathway from community college to university holds promise for advancing equity in STEM because it is followed by disproportionately high numbers of underrepresented students. Among the challenges these students face is cultivating belonging in multiple institutional settings. By combining belonging and validation theories, this qualitative study investigated how underrepresented students’ belonging developed in their STEM majors, highlighting differences between students who transferred and those who began as first-time in college (FTIC) students. The findings revealed that for each type of belonging experience a smaller proportion of transfer students than FTIC students experienced validation and a higher proportion experienced invalidation. Department-based transfer student orientation and ongoing programming were uniformly validating to STEM transfer students. The study provides evidence that major belonging is an academic phenomenon that is within the scope of institutional responsibility to improve. Practical implications for administrators and faculty are included as are suggestions for future research.  more » « less
Award ID(s):
1761185
PAR ID:
10387681
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of College Student Retention: Research, Theory & Practice
Volume:
26
Issue:
4
ISSN:
1521-0251
Format(s):
Medium: X Size: p. 1072-1099
Size(s):
p. 1072-1099
Sponsoring Org:
National Science Foundation
More Like this
  1. Better understanding of how students achieve vertical transfer is vital for advancing equity in science, technology, engineering and mathematics (STEM) majors. Among the many sources of barriers, delays, and complexities demonstrated in previous research as influencing vertical transfer outcomes, the transfer admission process has been generally neglected. Using a longitudinal, qualitative design, and drawing on transfer capital and field theories, this study investigated how community college students who are underrepresented in STEM fields successfully navigated admission to a four-year institution in a STEM major. Results indicated that students experienced transfer admission as risky and uncertain. They accrued transfer capital over time, in the form of knowledge about transfer admission and strategies to bolster their competitiveness, including regulating their coursework intensity and actively managing their GPAs. Although these forms of transfer capital helped students succeed in transferring, some strategies could backfire, causing unintended negative consequences, such as time-to-completion delays, excess credit accumulation, or disadvantages in securing admission. Results supported the contention that the transfer admission process is a pivotal, yet largely neglected aspect of student experience in STEM vertical pathways. Conclusions provide suggestions for further research and implications for institutional practice. 
    more » « less
  2. This research paper describes the experiences of freshman STEM students arriving on a college campus for the first time after nearly a year and a half of online learning in high school. Fall 2021 marked the return of in-person learning in higher education, grown from a belief in and commitment to the value of interactions only achieved in such context (Sabella, 2021). First-year programs across the country welcomed first-time-in-college (FTIC) freshmen, many of whom experienced lower levels of social, emotional, and academic well-being due to extended periods of online learning in their final years of high school (Duckworth, et al., 2021). This reality, for some students, represented an unfamiliar learning environment to be negotiated in understanding their multiplying and evolving spaces as learners (e.g., Sequeira & Dacey, 2020). This qualitative study sought to understand the aspects and ways in which FTIC freshmen in a STEM student success program experienced a face-to-face first semester of college following an extended period of online learning, and how these experiences shaped a sense of belonging toward identity development, both as a college student in general and as a STEM major in particular. To explore these ideas, longitudinal qualitative data were collected through a series of focus groups in the fall of 2021. Participating students had substantial identified financial need and received scholarship support as part of the program. They also had the opportunity to participate as a cohort in intentionally designed curricular and co-curricular activities aimed at supporting their academic journey toward successful completion of a STEM degree. Findings suggest that physical space (e.g., the library and other specific locations on campus) played a disproportionate role in creating a sense of belonging for students. The results of this project add important nuance to the sense of belonging and identity development literature by expanding our understanding of the ways place, context, and prior experiences may uniquely intersect to ultimately influence belonging and identity in college. Keywords: STEM Identity, COVID, First-Year Experience, Sense of Belonging 
    more » « less
  3. According to the National Science Foundation, 50% of Black engineering students who have received a bachelor’s and master’s degree attended a community college at some point during their academic career. However, while research highlights the importance of supporting underrepresented racial and ethnic minorities (URMs) in STEM disciplines, there is a dearth of literature focusing on URMs in community colleges who pursue engineering and other science/math-based majors. Further, Black undergraduates in community colleges are often homogenized by area of study, with little regard for their specific major/discipline. Similarly, while engineering education research has begun to focus on the population of community college students, less attention has been paid to unpacking the experiences of racial subgroups of community college attendees. The engineering student transfer process has specific aspects related to it being a selective and challenging discipline (e.g., limited enrollment policies, engineering culture shock) that warrants a closer investigation. The purpose of this paper is to examine the experiences of a small population of students who have recently transferred from several community colleges to one four-year engineering school. Specifically, we will present preliminary findings derived from interviews with three Black students who started their academic careers at several community colleges in a Mid-Atlantic state, before transferring to the flagship institution of that same state. Interview transcripts will undergo a thorough analysis and will be coded to document rich themes. Multiple analyses of coded interview data will be performed by several members of the research team, as well as external evaluation members who are leading scholars in STEM and/or transfer education research. This research is part of a larger-scale, three year qualitative study, which will examine the academic trajectories of two distinct groups of Blacks in engineering majors: 1) Blacks born and educated in the United States and 2) Those born and educated in other countries. By looking at these populations distinctly, we will build upon past literature that disaggregates the experiences of Black STEM students who represent multiple identities across the African diaspora. Through this lens, we hope to highlight the impact that cultural background may have on the transfer experience. The theoretical framework guiding this study posits that the persistence of Black transfer students in engineering is a longitudinal process influenced by the intersection of both individual and institutional factors. We draw from the STEM transfer model, noting that the transfer process commences during a student’s community college education and continues through his/her transfer and enrollment in an engineering program at a four-year institution. The following factors contribute to our conceptualization of this process: pre-college background, community college prior to transfer, initial transfer to the four-year university, nearing 4-year degree completion. 
    more » « less
  4. The COVID-19 pandemic caused extensive disruption to higher education, highlighting the negative impacts of emergency shift to online instruction. As a result, advantages of intentionally designed, online programs in higher education were overshadowed during the pandemic. Furthermore, socioeconomic disparities were exacerbated during the pandemic which extended to STEM undergraduate transfer students, who are more likely to be low-income, from historically underrepresented groups, older, and first generation in their family to attend college. To better understand the impact of the pandemic on STEM undergraduates, including those in an intentionally designed online program, ordinal regression analysis of 352 student survey respondents enrolled in a life sciences major at a large, R1 institution in the United States spring 2020 through fall 2021 was performed. Three student types are compared: on-campus, first-time in college (FTIC); on-campus transfer (OC-TR); and online transfer (ONL-TR) students. The latter group receives all course delivery online, whereas on-campus student groups received predominately in-person course delivery prior to the pandemic. ONL-TR students were over six times less likely to report negative educational impact compared to on-campus students, FTIC and OC-TR, while controlling for parent education, income, gender, race/ethnicity, and GPA. Additional survey items further explored this result and were validated with academic records and thematic analysis of students’ text responses. A pre−/post-pandemic comparison revealed that students maintained a similar course load and GPA, despite increased perceptions of a lower GPA during the pandemic. OC-TR students were over two times more likely to express increased concern related to delayed graduation and higher frequency of feeling stress compared to FTIC and ONL-TR students. Meanwhile, low-income students were more likely to report stressors due to the pandemic’s impact on daily life, independent of student type. Taken together, students in this intentionally designed online program were more resilient to the educational and emotional impacts of the pandemic compared to on-campus students. The differences between student groups warn against generalization of student impacts and suggest further research into the positive role of online learning, not just for delivery of educational content and expanding access, but for academic and emotional stability for different student populations. 
    more » « less
  5. Objective/Research Question: This research explores how community college students, who are underrepresented in science, technology, engineering, and mathematics (STEM) fields and aspire to vertical transfer in STEM make choices about majors and transfer destinations. The question is important to advancing equity in STEM, which continues to perpetuate disparities in attainment for minoritized, first-generation, and financially disadvantaged students, who disproportionately enter higher education in community colleges. Methods: Using a longitudinal, qualitative research design, the study relied on semi-structured interviewing to generate in-depth evidence about student experiences. Results: Findings showed that career goals were uniformly influential to students, yet career information was unevenly available or comprehensible during community college. Students’ choices about what to major in and where to transfer were iterative and intertwined, with these choices deeply connected to students’ families and lifetime priorities. Delays in student decision-making tended to have less to do with uncertain individual preferences than to lack of information about a specific STEM major and its alignment with possible future degrees, transfer destinations, and career pathways, as well as contingencies associated with the transfer admission process. Conclusions/Contributions: This research demonstrated STEM-specific nuance in how underrepresented community college students navigate major, career, and transfer destination decision-making as well as the influence of family and location-based priorities in student choices. Future research should investigate how to best provide directional support for students’ major and transfer destination decisions, including major-to-career awareness and the academic and personal dimensions of transfer. 
    more » « less