Synopsis Understanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes. Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was particularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contemporary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics studies to evaluate recent demographic declines. 
                        more » 
                        « less   
                    
                            
                            The promise and deceit of genomic selection component analyses
                        
                    
    
            Selection component analyses (SCA) relate individual genotype to fitness components such as viability, fecundity and mating success. SCA are based on population genetic models and yield selection estimates directly in terms of predicted allele frequency change. This paper explores the statistical properties of gSCA: experiments that apply SCA to genome-wide scoring of SNPs in field sampled individuals. Computer simulations indicate that gSCA involving a few thousand genotyped samples can detect allele frequency changes of the magnitude that has been documented in field experiments on diverse taxa. To detect selection, imprecise genotyping from low-level sequencing of large samples of individuals provides much greater power than precise genotyping of smaller samples. The simulations also demonstrate the efficacy of ‘haplotype matching’, a method to combine information from a limited collection of whole genome sequence (the reference panel) with the much larger sample of field individuals that are measured for fitness. Pooled sequencing is demonstrated as another way to increase statistical power. Finally, I discuss the interpretation of selection estimates in relation to the Beavis effect, the overestimation of selection intensities at significant loci. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1940785
- PAR ID:
- 10387751
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 288
- Issue:
- 1961
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            SUMMARY Maize (Zea maysssp.mays) populations exhibit vast ranges of genetic and phenotypic diversity. As sequencing costs have declined, an increasing number of projects have sought to measure genetic differences between and within maize populations using whole‐genome resequencing strategies, identifying millions of segregating single‐nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score common genetic variants. However, in practice, different projects frequently employ different analytical pipelines, often employ different reference genome assemblies and consistently filter for minor allele frequency within the study population. This constrains the potential to reuse and remix data on genetic diversity generated from different projects to address new biological questions in new ways. Here, we employ resequencing data from 1276 previously published maize samples and 239 newly resequenced maize samples to generate a single unified marker set of approximately 366 million segregating variants and approximately 46 million high‐confidence variants scored across crop wild relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the new variant set provides increased power to identify known causal flowering‐time genes using previously published trait data sets, as well as the potential to track changes in the frequency of functionally distinct alleles across the global distribution of modern maize.more » « less
- 
            Evolution by natural selection may be effective enough to allow for recurrent, rapid adaptation to distinct niche environments within a well-mixed population. For this to occur, selection must act on standing genetic variation such that mortality i.e. genetic load, is minimized while polymorphism is maintained. Selection on multiple, redundant loci of small effect provides a potentially inexpensive solution. Yet, demonstrating adaptation via redundant, polygenic selection in the wild remains extremely challenging because low per-locus effect sizes and high genetic redundancy severely reduce statistical power. One approach to facilitate identification of loci underlying polygenic selection is to harness natural replicate populations experiencing similar selection pressures that harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus. F. heteroclitus inhabits salt marsh estuaries that are characterized by high environmental heterogeneity e.g. tidal ponds, creeks, coastal basins. Here, we sample four of these heterogeneous niches (one coastal basin and three replicate tidal ponds) at two time points from among a single, panmictic F. heteroclitus population. We identify 10,861 single nucleotide polymorphisms using a genotyping-by-sequencing approach and quantify temporal allele frequency change within, as well as spatial divergence among subpopulations residing in these niches. We find a significantly elevated number of concordant allele frequency changes among all subpopulations, suggesting ecosystem-wide adaptation to a common selection pressure. Remarkably, we also find an unexpected number of temporal allele frequency changes that generate fine-scale divergence among subpopulations, suggestive of local adaptation to distinct niche environments. Both patterns are characterized by a lack of large-effect loci yet an elevated total number of significant loci. Adaptation via redundant, polygenic selection offers a likely explanation for these patterns as well as a potential mechanism for polymorphism maintenance in the F. heteroclitus system.more » « less
- 
            Abstract Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low‐fitness F2interpopulation hybrids of the copepodTigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co‐adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome‐wide barriers to gene flow between closely related taxa.more » « less
- 
            Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses—ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy—for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    