Extremophytes are naturally selected to survive environmental stresses, but scarcity of genetic resources for them developed with spatiotemporal resolution limit their use in stress biology. Schrenkiella parvula is one of the leading extremophyte models with initial molecular genomic resources developed to study its tolerance mechanisms to high salinity. Here we present a transcriptome atlas for S. parvula with subsequent analyses to highlight its diverse gene expression networks associated with salt responses. We included spatiotemporal expression profiles, expression specificity of each gene, and co-expression and functional gene networks representing 115 transcriptomes sequenced from 35 tissue and developmental stages examining their responses before and after 27 salt treatments in our current study. The highest number of tissue-preferentially expressed genes were found in seeds and siliques while genes in seedlings showed the broadest expression profiles among developmental stages. Seedlings had the highest magnitude of overall transcriptomic responses to salinity compared to mature tissues and developmental stages. Differentially expressed genes in response to salt were largely mutually exclusive but shared common stress response pathways spanning across tissues and developmental stages. Our foundational dataset created for S. parvula representing a stress-adapted wild plant lays the groundwork for future functional, comparative, and evolutionary studies using extremophytes aiming to uncover novel stress tolerant mechanisms.
more »
« less
Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms
Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named “derivedness index” to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.
more »
« less
- Award ID(s):
- 1656752
- PAR ID:
- 10387778
- Date Published:
- Journal Name:
- Frontiers in Cell and Developmental Biology
- Volume:
- 9
- ISSN:
- 2296-634X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos ofDrosophila melanogasterare particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.more » « less
-
Abstract The phenotype of an organism is shaped by gene expression within developing tissues. This shaping relates the evolution of gene expression to phenotypic evolution, through divergence in gene expression and consequent phenotype. Rates of phenotypic evolution receive extensive attention. However, the degree to which divergence in the phenotype of gene expression is subject to heterogeneous rates of evolution across developmental stages has not previously been assessed. Here, we analyzed the evolution of the expression of single-copy orthologs within 9 species of Sordariomycetes Fungi, across 9 developmental stages within asexual spore germination and sexual reproduction. Rates of gene expression evolution exhibited high variation both within and among developmental stages. Furthermore, rates of gene expression evolution were correlated with nonsynonymous to synonymous substitution rates (dN/dS), suggesting that gene sequence evolution and expression evolution are indirectly or directly driven by common evolutionary forces. Functional pathway analyses demonstrate that rates of gene expression evolution are higher in labile pathways such as carbon metabolism, and lower in conserved pathways such as those involved in cell cycle and molecular signaling. Lastly, the expression of genes in the meiosis pathway evolved at a slower rate only across the stages where meiosis took place, suggesting that stage-specific low rates of expression evolution implicate high relevance of the genes to developmental operations occurring between those stages.more » « less
-
Abstract Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the molluscTritia(also known asIlyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these,lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages.more » « less
-
Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans , a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.more » « less
An official website of the United States government

