skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perception of Mechanical Properties via Wrist Haptics: Effects of Feedback Congruence
Despite non-co-location, haptic stimulation at the wrist can potentially provide feedback regarding interactions at the fingertips without encumbering the user’s hand. Here we investigate how two types of skin deformation at the wrist (normal and shear) relate to the perception of the mechanical properties of virtual objects. We hypothesized that a congruent mapping (i.e. when the most relevant interaction forces during a virtual interaction spatially match the haptic feedback at the wrist) would result in better perception than other map- pings.We performed an experiment where haptic devices at the wrist rendered either normal or shear feedback during manipulation of virtual objects with varying stiffness, mass, or friction properties. Perception of mechanical properties was more accurate with congruent skin stimulation than noncongruent. In addition, discrimination performance and subjective reports were positively influenced by congruence. This study demonstrates that users can perceive mechanical properties via haptic feedback provided at the wrist with a consistent mapping between haptic feedback and interaction forces at the fingertips, regardless of congruence.  more » « less
Award ID(s):
1830163
PAR ID:
10387804
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
620 to 627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-to-tactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degree-of-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments. 
    more » « less
  2. null (Ed.)
    Haptic feedback allows an individual to identify various object properties. In this preliminary study, we determined the performance of stiffness recognition using transcutaneous nerve stimulation when a prosthetic hand was moved passively or was controlled actively by the subjects. Using a 2×8 electrode grid placed along the subject's upper arm, electrical stimulation was delivered to evoke somatotopic sensation along their index finger. Stimulation intensity, i.e. sensation strength, was modulated using the fingertip forces from a sensorized prosthetic hand. Object stiffness was encoded based on the rate of change of the evoked sensation as the prosthesis grasped one of three objects of different stiffness levels. During active control, sensation was modulated in real time as recorded forces were converted to stimulation amplitudes. During passive control, prerecorded force traces were randomly selected from a pool. Our results showed that the accuracy of object stiffness recognition was similar in both active and passive conditions. A slightly lower accuracy was observed during active control in one subject, which indicated that the sensorimotor integration processes could affect haptic perception for some users. 
    more » « less
  3. null (Ed.)
    Technological advancements and increased access have prompted the adoption of head- mounted display based virtual reality (VR) for neuroscientific research, manual skill training, and neurological rehabilitation. Applications that focus on manual interaction within the virtual environment (VE), especially haptic-free VR, critically depend on virtual hand-object collision detection. Knowledge about how multisensory integration related to hand-object collisions affects perception-action dynamics and reach-to-grasp coordination is needed to enhance the immersiveness of interactive VR. Here, we explored whether and to what extent sensory substitution for haptic feedback of hand-object collision (visual, audio, or audiovisual) and collider size (size of spherical pointers representing the fingertips) influences reach-to-grasp kinematics. In Study 1, visual, auditory, or combined feedback were compared as sensory substitutes to indicate the successful grasp of a virtual object during reach-to-grasp actions. In Study 2, participants reached to grasp virtual objects using spherical colliders of different diameters to test if virtual collider size impacts reach-to-grasp. Our data indicate that collider size but not sensory feedback modality significantly affected the kinematics of grasping. Larger colliders led to a smaller size-normalized peak aperture. We discuss this finding in the context of a possible influence of spherical collider size on the perception of the virtual object’s size and hence effects on motor planning of reach-to-grasp. Critically, reach-to-grasp spatiotemporal coordination patterns were robust to manipulations of sensory feedback modality and spherical collider size, suggesting that the nervous system adjusted the reach (transport) component commensurately to the changes in the grasp (aperture) component. These results have important implications for research, commercial, industrial, and clinical applications of VR. 
    more » « less
  4. Abstract The ability to render realistic texture perception using haptic devices has been consistently challenging. A key component of texture perception is roughness. When we touch surfaces, mechanoreceptors present under the skin are activated and the information is processed by the nervous system, enabling perception of roughness/smoothness. Several distributed haptic devices capable of producing localized skin stretch have been developed with the aim of rendering realistic roughness perception; however, current state-of-the-art devices rely on device fabrication and psychophysical experimentation to determine whether a device configuration will perform as desired. Predictive models can elucidate physical mechanisms, providing insight and a more effective design iteration process. Since existing models (1, 2) are derived from responses to normal stimuli only, they cannot predict the performance of laterally actuated devices which rely on frictional shear forces to produce localized skin stretch. They are also unable to predict the augmentation of roughness perception when the actuators are spatially dispersed across the contact patch or actuated with a relative phase difference (3). In this study, we have developed a model that can predict the perceived roughness for arbitrary external stimuli and validated it against psychophysical experimental results from different haptic devices reported in the literature. The model elucidates two key mechanisms: (i) the variation in the change of strain across the contact patch can predict roughness perception with strong correlation and (ii) the inclusion of lateral shear forces is essential to correctly predict roughness perception. Using the model can accelerate device optimization by obviating the reliance on trial-and-error approaches. 
    more » « less
  5. Active, exploratory touch supports human perception of a broad set of invisible physical surface properties. When traditionally hands-on tasks, such as medical palpation of soft tissue, are translated to virtual settings, haptic perception is throttled by technological limitations, and much of the richness of active exploration can be lost. The current research seeks to restore some of this richness with advanced methods of passively conveying haptic data alongside synchronized visual feeds. A robotic platform presented haptic stimulation modeled after the relative motion between a hypothetical physician's hands and artificial tissue samples during palpation. Performance in discriminating the sizes of hidden “tumors” in these samples was compared across display conditions which included haptic feedback and either: 1) synchronized video of the participant's hand, recorded during active exploration; 2) synchronized video of another person's hand; 3) no accompanying video. The addition of visual feedback did not improve task performance, which was similar whether receiving relative motion recorded from one's own hand or someone else's. While future research should explore additional strategies to improve task performance, this initial attempt to translate active haptic sensations to passive presentations indicates that visuo-haptic feedback can induce reliable haptic perceptions of motion in a stationary passive hand. 
    more » « less