skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Mean‐standard deviation model for minimum cost flow problem
We study the mean-standard deviation minimum cost flow (MSDMCF) problem, where the objective is minimizing a linear combination of the mean and standard deviation of flow costs. Due to the nonlinearity and nonseparability of the objective, the problem is not amenable to the standard algorithms developed for network flow problems. We prove that the solution for the MSDMCF problem coincides with the solution for a particular mean-variance minimum cost flow (MVMCF) problem. Leveraging this result, we propose bisection (BSC), Newton–Raphson (NR), and a hybrid (NR-BSC)—method seeking to find the specific MVMCF problem whose optimal solution coincides with the optimal solution for the given MSDMCF problem. We further show that this approach can be extended to solve more generalized nonseparable parametric minimum cost flow problems under certain conditions. Computational experiments show that the NR algorithm is about twice as fast as the CPLEX solver on benchmark networks generated with NETGEN.  more » « less
Award ID(s):
1826337 1562109
PAR ID:
10387902
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Networks
ISSN:
0028-3045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a sweep cover problem, mobile sensors move around to collect information from positions of interest (PoIs) periodically and timely. A PoI is sweep-covered if it is visited at least once in every time period t. In this paper, we study approximation algorithms on three types of sweep cover problems. The partial sweep cover problem (PSC) aims to use the minimum number of mobile sensors to sweep-cover at least a given number of PoIs. The prize-collecting sweep cover problem aims to minimize the cost of mobile sensors plus the penalties on those PoIs that are not sweep-covered. The budgeted sweep cover problem (BSC) aims to use a budgeted number N of mobile sensors to sweep-cover as many PoIs as possible. We propose a unified approach which can yield approximation algorithms for PSC and PCSC within approximation ratio at most 8, and a bicriteria (4, 1 2 )-approximation algorithm for BSC (that is, no more than 4N mobile sensors are used to sweep-cover at least 1 2 opt PoIs, where opt is the number of PoIs that can be sweep-covered by an optimal solution). Furthermore, our results for PSC and BSC can be extended to their weighted version, and our algorithm for PCSC answers a question proposed in Liang etal. (Theor Comput Sci, 2022) on PCSC 
    more » « less
  2. In this work, we develop a new framework for dynamic network flow problems based on optimal transport theory. We show that the dynamic multicommodity minimum-cost network flow problem can be formulated as a multimarginal optimal transport problem, where the cost function and the constraints on the marginals are associated with a graph structure. By exploiting these structures and building on recent advances in optimal transport theory, we develop an efficient method for such entropy-regularized optimal transport problems. In particular, the graph structure is utilized to efficiently compute the projections needed in the corresponding Sinkhorn iterations, and we arrive at a scheme that is both highly computationally efficient and easy to implement. To illustrate the performance of our algorithm, we compare it with a state-of-the-art linear programming (LP) solver. We achieve good approximations to the solution at least one order of magnitude faster than the LP solver. Finally, we showcase the methodology on a traffic routing problem with a large number of commodities. Funding: This work was supported by KTH Digital Futures, Knut och Alice Wallenbergs Stiftelse [Grants KAW 2018.0349, KAW 2021.0274, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation], Vetenskapsrådet [Grant 2020-03454], and the National Science Foundation [Grants 1942523 and 2206576]. 
    more » « less
  3. Integer programming (IP) has proven to be highly effective in solving many path-based optimization problems in robotics. However, the applications of IP are generally done in an ad-hoc, problem-specific manner. In this work, after examined a wide range of path-based optimization problems, we describe an IP solution methodology for these problems that is both easy to apply (in two simple steps) and high-performance in terms of the computation time and the achieved optimal- ity. We demonstrate the generality of our approach through the application to three challenging path-based optimization problems: multi-robot path planning (MPP), minimum constraint removal (MCR), and reward collection problems (RCPs). Associ- ated experiments show that the approach can efficiently produce (near-)optimal solutions for problems with large state spaces, complex constraints, and complicated objective functions. In conjunction with the proposition of the IP methodology, we introduce two new and practical robotics problems: multi-robot minimum constraint removal (MMCR) and multi-robot path planning (MPP) with partial solutions, which can be quickly and effectively solved using our proposed IP solution pipeline. 
    more » « less
  4. To succeed in a competitive business environment, optimal capital investment plays a significant role. A firm cannot ignore the penalty associated with carrying excessive or insufficient production capacity. We provide a model of the optimal rate of capital investment under uncertainty incorporating a penalty to study the key impact. The penalty is modeled as a squared deviation between the expected and the desired levels. The payoff functional thus incorporates a nonlinear function of the expected capital level. This control problem is of the mean field type. We obtain a closed form solution by a direct method. As expected for mean field type control problems, the optimal feedback depends not only on the current states, but also on the initial conditions. We perform numerical studies to quantitatively address how risk control in capital level deviation affects the optimal investment policy. 
    more » « less
  5. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires $${O}(\max\{1/\epsilon_f,1/\epsilon_g\})$$ iterations to find a solution that is $$\epsilon_f$$-optimal for the upper-level objective and $$\epsilon_g$$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires $${O}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$$ iterations to find an $$(\epsilon_f,\epsilon_g)$$-optimal solution. We also prove stronger convergence guarantees under the Holderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems. 
    more » « less