We study the mean-standard deviation minimum cost flow (MSDMCF) problem, where the objective is minimizing a linear combination of the mean and standard deviation of flow costs. Due to the nonlinearity and nonseparability of the objective, the problem is not amenable to the standard algorithms developed for network flow problems. We prove that the solution for the MSDMCF problem coincides with the solution for a particular mean-variance minimum cost flow (MVMCF) problem. Leveraging this result, we propose bisection (BSC), Newton–Raphson (NR), and a hybrid (NR-BSC)—method seeking to find the specific MVMCF problem whose optimal solution coincides with the optimal solution for the given MSDMCF problem. We further show that this approach can be extended to solve more generalized nonseparable parametric minimum cost flow problems under certain conditions. Computational experiments show that the NR algorithm is about twice as fast as the CPLEX solver on benchmark networks generated with NETGEN.
more »
« less
Scalable Computation of Dynamic Flow Problems via Multimarginal Graph-Structured Optimal Transport
In this work, we develop a new framework for dynamic network flow problems based on optimal transport theory. We show that the dynamic multicommodity minimum-cost network flow problem can be formulated as a multimarginal optimal transport problem, where the cost function and the constraints on the marginals are associated with a graph structure. By exploiting these structures and building on recent advances in optimal transport theory, we develop an efficient method for such entropy-regularized optimal transport problems. In particular, the graph structure is utilized to efficiently compute the projections needed in the corresponding Sinkhorn iterations, and we arrive at a scheme that is both highly computationally efficient and easy to implement. To illustrate the performance of our algorithm, we compare it with a state-of-the-art linear programming (LP) solver. We achieve good approximations to the solution at least one order of magnitude faster than the LP solver. Finally, we showcase the methodology on a traffic routing problem with a large number of commodities. Funding: This work was supported by KTH Digital Futures, Knut och Alice Wallenbergs Stiftelse [Grants KAW 2018.0349, KAW 2021.0274, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation], Vetenskapsrådet [Grant 2020-03454], and the National Science Foundation [Grants 1942523 and 2206576].
more »
« less
- PAR ID:
- 10442505
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider optimal transport-based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded in the DRO problem (e.g., strong convexity even if the non-DRO problem is not strongly convex, a suitable scaling of the Lagrangian for the DRO constraint, etc., which are crucial for the design of efficient algorithms). As a consequence of these results, one can develop efficient optimization procedures that have the same sample and iteration complexity as a natural non-DRO benchmark algorithm, such as stochastic gradient descent.more » « less
-
Network planning is critical to the performance, reliability and cost of web services. This problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's practice relies on hand-tuned heuristics from human experts to address the scalability challenge of ILP solvers. In this paper, we propose NeuroPlan, a deep reinforcement learning (RL) approach to solve the network planning problem. This problem involves multi-step decision making and cost minimization, which can be naturally cast as a deep RL problem. We develop two important domain-specific techniques. First, we use a graph neural network (GNN) and a novel domain-specific node-link transformation for state encoding, in order to handle the dynamic nature of the evolving network topology during planning decision making. Second, we leverage a two-stage hybrid approach that first uses deep RL to prune the search space and then uses an ILP solver to find the optimal solution. This approach resembles today's practice, but avoids human experts with an RL agent in the first stage. Evaluation on real topologies and setups from large production networks demonstrates that NeuroPlan scales to large topologies beyond the capability of ILP solvers, and reduces the cost by up to 17% compared to hand-tuned heuristics.more » « less
-
Abstract In large-scale applications including medical imaging, collocation differential equation solvers, and estimation with differential privacy, the underlying linear inverse problem can be reformulated as a streaming problem. In theory, the streaming problem can be effectively solved using memory-efficient, exponentially-converging streaming solvers. In special cases when the underlying linear inverse problem is finite-dimensional, streaming solvers can periodically evaluate the residual norm at a substantial computational cost. When the underlying system is infinite dimensional, streaming solver can only access noisy estimates of the residual. While such noisy estimates are computationally efficient, they are useful only when their accuracy is known. In this work, we rigorously develop a general family of computationally-practical residual estimators and their uncertainty sets for streaming solvers, and we demonstrate the accuracy of our methods on a number of large-scale linear problems. Thus, we further enable the practical use of streaming solvers for important classes of linear inverse problems.more » « less
-
Motivated by robust dynamic resource allocation in operations research, we study the Online Learning to Transport (OLT) problem where the decision variable is a probability measure, an infinite-dimensional object. We draw connections between online learning, optimal transport, and partial differential equations through an insight called the minimal selection principle, originally studied in the Wasserstein gradient flow setting by Ambrosio et al. (2005). This allows us to extend the standard online learning framework to the infinite-dimensional setting seamlessly. Based on our framework, we derive a novel method called the minimal selection or exploration (MSoE) algorithm to solve OLT problems using mean-field approximation and discretization techniques. In the displacement convex setting, the main theoretical message underpinning our approach is that minimizing transport cost over time (via the minimal selection principle) ensures optimal cumulative regret upper bounds. On the algorithmic side, our MSoE algorithm applies beyond the displacement convex setting, making the mathematical theory of optimal transport practically relevant to non-convex settings common in dynamic resource allocation.more » « less
An official website of the United States government

