skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning
It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan is altered over the treatment course using a new treatment paradigm referred to in the literature as spatiotemporal fractionation. Because of the nonconvex and large-scale nature of the corresponding treatment plan optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal fractionation has been investigated using stylized cancer cases to circumvent the arising computational challenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotemporally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning problem is formulated as a quadratically constrained quadratic program and is solved to local optimality using a constraint-generation approach, in which each subproblem is solved using sequential linear/quadratic programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods are tested on deidentified clinical liver and prostate cancer cases. Results show that the proposed method is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around 10%–12% for cancer cases tested in this study. Summary of Contribution: The design of spatiotemporally fractionated radiotherapy plans for clinical cancer cases gives rise to a class of nonconvex and large-scale quadratically constrained quadratic programming (QCQP) problems, the solution of which requires the development of efficient models and solution methods. To address the computational challenges posed by the large-scale and nonconvex nature of the problem, we employ large-scale optimization techniques to develop scalable solution methods that find local-optimal solutions along with optimality bounds. We test the performance of the proposed methods on deidentified clinical cancer cases. The proposed methods in this study can, in principle, be applied to solve other QCQP formulations, which commonly arise in several application domains, including graph theory, power systems, and signal processing.  more » « less
Award ID(s):
1662819
PAR ID:
10352615
Author(s) / Creator(s):
;
Date Published:
Journal Name:
INFORMS Journal on Computing
Volume:
34
Issue:
2
ISSN:
1091-9856
Page Range / eLocation ID:
1240 to 1256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundStereotactic radiosurgery (SRS) is an established treatment for patients with brain metastases (BMs). However, damage to the healthy brain may limit the tumor dose for patients with multiple lesions. PurposeIn this study, we investigate the potential of spatiotemporal fractionation schemes to reduce the biological dose received by the healthy brain in SRS of multiple BMs, and also demonstrate a novel concept of spatiotemporal fractionation for polymetastatic cancer patients that faces less hurdles for clinical implementation. MethodsSpatiotemporal fractionation (STF) schemes aim at partial hypofractionation in the metastases along with more uniform fractionation in the healthy brain. This is achieved by delivering distinct dose distributions in different fractions, which are designed based on their cumulative biologically effective dose () such that each fraction contributes with high doses to complementary parts of the target volume, while similar dose baths are delivered to the normal tissue. For patients with multiple brain metastases, a novel constrained approach to spatiotemporal fractionation (cSTF) is proposed, which is more robust against setup and biological uncertainties. The approach aims at irradiating entire metastases with possibly different doses, but spatially similar dose distributions in every fraction, where the optimal dose contribution of every fraction to each metastasis is determined using a new planning objective to be added to the BED‐based treatment plan optimization problem. The benefits of spatiotemporal fractionation schemes are evaluated for three patients, each with >25 BMs. ResultsFor the same tumor BED10and the same brain volume exposed to high doses in all plans, the mean brain BED2can be reduced compared to uniformly fractionated plans by 9%–12% with the cSTF plans and by 13%–19% with the STF plans. In contrast to the STF plans, the cSTF plans avoid partial irradiation of the individual metastases and are less sensitive to misalignments of the fractional dose distributions when setup errors occur. ConclusionSpatiotemporal fractionation schemes represent an approach to lower the biological dose to the healthy brain in SRS‐based treatments of multiple BMs. Although cSTF cannot achieve the full BED reduction of STF, it improves on uniform fractionation and is more robust against both setup errors and biological uncertainties related to partial tumor irradiation. 
    more » « less
  2. In radiation therapy treatment plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem that infers a sparse set of objectives for prostate cancer treatment planning based on historical treatment data. We formulate the problem as a nonconvex bilevel mixed-integer program using inverse optimization and highlight its connection with feature selection to propose multiple solution approaches, including greedy heuristics and regularized problems and application-specific methods that use anatomical information of the patients. Our results show that the proposed heuristics find objectives that are near optimal. Via curve analysis on dose-volume histograms, we show that the learned objectives closely represent latent clinical preferences. 
    more » « less
  3. A memristor crossbar, which is constructed with memristor devices, has the unique ability to change and memorize the state of each of its memristor elements. It also has other highly desirable features such as high density, low power operation and excellent scalability. Hence the memristor crossbar technology can potentially be utilized for developing low-complexity and high-scalability solution frameworks for solving a large class of convex optimization problems, which involve extensive matrix operations and have critical applications in multiple disciplines. This paper, as the first attempt towards this direction, proposes a novel memristor crossbar-based framework for solving two important convex optimization problems, i.e., second-order cone programming (SOCP) and homogeneous quadratically constrained quadratic programming (QCQP) problems. In this paper, the alternating direction method of multipliers (ADMM) is adopted. It splits the SOCP and homogeneous QCQP problems into sub-problems that involve the solution of linear systems, which could be effectively solved using the memristor crossbar in O(1) time complexity. The proposed algorithm is an iterative procedure that iterates a constant number of times. Therefore, algorithms to solve SOCP and homogeneous QCQP problems have pseudo-O(N) complexity, which is a significant reduction compared to the state-of-the-art software solvers (O(N3.5)-O(N4)). 
    more » « less
  4. Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading cause of cancer deaths annually in the United States. Conventional treatment options include postoperative (adjuvant) and preoperative (neoadjuvant) chemotherapy and radiotherapy. Although these treatment modalities have shown to decrease tumor burden, a major limitation to chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-modulation strategies have emerged as a promising new therapeutic avenue to reduce this recurrence rate while minimizing undesirable systemic side effects. This review will focus specifically on the mechanisms of monoclonal antibodies: immune checkpoint inhibitors and cytokines, as well as current drugs approved by the Food and Drug Administration (FDA) and new clinical/pre-clinical trials. Finally, this review will investigate emerging methods used to monitor tumor response post-treatment. 
    more » « less
  5. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    Optimization problems with norm-bounding constraints appear in various applications, from portfolio optimization to machine learning, feature selection, and beyond. A widely used variant of these problems relaxes the norm-bounding constraint through Lagrangian relaxation and moves it to the objective function as a form of penalty or regularization term. A challenging class of these models uses the zero-norm function to induce sparsity in statistical parameter estimation models. Most existing exact solution methods for these problems use additional binary variables together with artificial bounds on variables to formulate them as a mixed-integer program in a higher dimension, which is then solved by off-the-shelf solvers. Other exact methods utilize specific structural properties of the objective function to solve certain variants of these problems, making them non-generalizable to other problems with different structures. An alternative approach employs nonconvex penalties with desirable statistical properties, which are solved using heuristic or local methods due to the structural complexity of those terms. In this paper, we develop a novel graph-based method to globally solve optimization problems that contain a generalization of norm-bounding constraints. This includes standard ℓp-norms for p∈[0,∞) as well as nonconvex penalty terms, such as SCAD and MCP, as special cases. Our method uses decision diagrams to build strong convex relaxations for these constraints in the original space of variables without the need to introduce additional auxiliary variables or impose artificial variable bounds. We show that the resulting convexification method, when incorporated into a spatial branch-and-cut framework, converges to the global optimal value of the problem. To demonstrate the capabilities of the proposed framework, we conduct preliminary computational experiments on benchmark sparse linear regression problems with challenging nonconvex penalty terms that cannot be modeled or solved by existing global solvers. 
    more » « less