Comparison of advanced set-based fault detection methods with classical data-driven and observer-based methods for uncertain nonlinear processes
- Award ID(s):
- 1949748
- PAR ID:
- 10388108
- Date Published:
- Journal Name:
- Computers & Chemical Engineering
- Volume:
- 166
- Issue:
- C
- ISSN:
- 0098-1354
- Page Range / eLocation ID:
- 107975
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant.Discrete choice modelsare a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.more » « less
-
The mean squared error loss is widely used in many applications, including auto-encoders, multi-target regression, and matrix factorization, to name a few. Despite computational advantages due to its differentiability, it is not robust to outliers. In contrast, ℓ𝑝 norms are known to be robust, but cannot be optimized via, e.g., stochastic gradient descent, as they are non-differentiable. We propose an algorithm inspired by so-called model-based optimization (MBO), which replaces a non-convex objective with a convex model function and alternates between optimizing the model function and updating the solution. We apply this to robust regression, proposing SADM, a stochastic variant of the Online Alternating Direction Method of Multipliers (OADM) to solve the inner optimization in MBO. We show that SADM converges with the rate 𝑂(log𝑇/𝑇) . Finally, we demonstrate experimentally (a) the robustness of ℓ𝑝 norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with gradient methods on autoencoders and multi-target regression.more » « less
An official website of the United States government

