skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph-based methods for discrete choice
Abstract Choices made by individuals have widespread impacts—for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase—moreover, data on these choices are increasingly abundant.Discrete choice modelsare a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Traditional methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.  more » « less
Award ID(s):
2146079
PAR ID:
10537048
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Network Science
Volume:
12
Issue:
1
ISSN:
2050-1242
Page Range / eLocation ID:
21-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations. 
    more » « less
  2. Hilliger, Isabel; Muñoz-Merino, Pedro J.; De Laet, Tinne; Ortega-Arranz, Alejandro; Farrell, Tracie (Ed.)
    Studies of technology-enhanced learning (TEL) environments indicated that learner behavior could be affected (positively or negatively) by presenting information about their peer groups, such as peer in-system performance or course grades. Researchers explained these findings by the social comparison theory, competition, or by categorizing them as an impact of gamification features. Although the choice of individual peers is explored considerably in recent TEL research, the effect of learner control on peer-group selection received little attention. This paper attempts to extend prior work on learner-controlled social comparison by studying a novel fine-grained peer group selection interface in a TEL environment for learning Python programming. To achieve this goal, we analyzed system usage logs and questionnaire responses collected from multiple rounds of classroom studies. By observing student actions in selecting and refining their peer comparison cohort, we understand better whom the student perceives as their peers and how this perception changes during the course. We also explored the connection between their peer group choices and their engagement with learning content. Finally, we attempted to associate student choices in peer selection with several dimensions of individual differences. 
    more » « less
  3. Predicting the future trajectories of multiple interacting pedestrians within a scene has increasingly gained importance in various fields, e.g., autonomous driving, human–robot interaction, and so on. The complexity of this problem is heightened due to the social dynamics among different pedestrians and their heterogeneous implicit preferences. In this paper, we present Information Maximizing Spatial-Temporal Graph Convolutional Attention Network (InfoSTGCAN), which takes into account both pedestrian interactions and heterogeneous behavior choice modeling. To effectively capture the complex interactions among pedestrians, we integrate spatial-temporal graph convolution and spatial-temporal graph attention. For grasping the heterogeneity in pedestrians’ behavior choices, our model goes a step further by learning to predict an individual-level latent code for each pedestrian. Each latent code represents a distinct pattern of movement choice. Finally, based on the observed historical trajectory and the learned latent code, the proposed method is trained to cover the ground-truth future trajectory of this pedestrian with a bi-variate Gaussian distribution. We evaluate the proposed method through a comprehensive list of experiments and demonstrate that our method outperforms all baseline methods on the commonly used metrics, Average Displacement Error and Final Displacement Error. Notably, visualizations of the generated trajectories reveal our method’s capacity to handle different scenarios. 
    more » « less
  4. Transfer learning uses a data model, trained to make predictions or inferences on data from one population, to make reliable predictions or inferences on data from another population. Most existing transfer learning approaches are based on fine-tuning pre-trained neural network models, and fail to provide crucial uncertainty quantification. We develop a statistical framework for model predictions based on transfer learning, called RECaST. The primary mechanism is a Cauchy random effect that recalibrates a source model to a target population; we mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models, in the sense that prediction sets will achieve their nominal stated coverage, and we numerically illustrate the method's robustness to asymptotic approximations for nonlinear models. Whereas many existing techniques are built on particular source models, RECaST is agnostic to the choice of source model, and does not require access to source data. For example, our RECaST transfer learning approach can be applied to a continuous or discrete data model with linear or logistic regression, deep neural network architectures, etc. Furthermore, RECaST provides uncertainty quantification for predictions, which is mostly absent in the literature. We examine our method's performance in a simulation study and in an application to real hospital data. 
    more » « less
  5. This paper deals with randomized polling of a social network. In the case of forecasting the outcome of an election between two candidates A and B, classical intent polling asks randomly sampled individuals: who will you vote for? Expectation polling asks: who do you think will win? In this paper, we propose a novel neighborhood expectation polling (NEP) strategy that asks randomly sampled individuals: what is your estimate of the fraction of votes for A? Therefore, in NEP, sampled individuals will naturally look at their neighbors (defined by the underlying social network graph) when answering this question. Hence, the mean squared error (MSE) of NEP methods rely on selecting the optimal set of samples from the network. To this end, we propose three NEP algorithms for the following cases: (i) the social network graph is not known but, random walks (sequential exploration) can be performed on the graph (ii) the social network graph is unknown. For case (i) and (ii), two algorithms based on a graph theoretic consequence called friendship paradox are proposed. Theoretical results on the dependence of the MSE of the algorithms on the properties of the network are established. Numerical results on real and synthetic data sets are provided to illustrate the performance of the algorithms. 
    more » « less