skip to main content


Search for: All records

Award ID contains: 2018388

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background and Aim:

    Copper is an essential trace metal serving as a cofactor in innate immunity, metabolism, and iron transport. We hypothesize that copper deficiency may influence survival in patients with cirrhosis through these pathways.

    Methods:

    We performed a retrospective cohort study involving 183 consecutive patients with cirrhosis or portal hypertension. Copper from blood and liver tissues was measured using inductively coupled plasma mass spectrometry. Polar metabolites were measured using nuclear magnetic resonance spectroscopy. Copper deficiency was defined by serum or plasma copper below 80 µg/dL for women or 70 µg/dL for men.

    Results:

    The prevalence of copper deficiency was 17% (N=31). Copper deficiency was associated with younger age, race, zinc and selenium deficiency, and higher infection rates (42% vs. 20%,p=0.01). Serum copper correlated positively with albumin, ceruloplasmin, hepatic copper, and negatively with IL-1β. Levels of polar metabolites involved in amino acids catabolism, mitochondrial transport of fatty acids, and gut microbial metabolism differed significantly according to copper deficiency status. During a median follow-up of 396 days, mortality was 22.6% in patients with copper deficiency compared with 10.5% in patients without. Liver transplantation rates were similar (32% vs. 30%). Cause-specific competing risk analysis showed that copper deficiency was associated with a significantly higher risk of death before transplantation after adjusting for age, sex, MELD-Na, and Karnofsky score (HR: 3.40, 95% CI, 1.18–9.82,p=0.023).

    Conclusions:

    In advanced cirrhosis, copper deficiency is relatively common and is associated with an increased infection risk, a distinctive metabolic profile, and an increased risk of death before transplantation.

     
    more » « less
  2. Abstract

    Familial dysautonomia (FD) is a rare genetic neurologic disorder caused by impaired neuronal development and progressive degeneration of both the peripheral and central nervous systems. FD is monogenic, with >99.4% of patients sharing an identical point mutation in the elongator acetyltransferase complex subunit 1 (ELP1) gene, providing a relatively simple genetic background in which to identify modifiable factors that influence pathology. Gastrointestinal symptoms and metabolic deficits are common among FD patients, which supports the hypothesis that the gut microbiome and metabolome are altered and dysfunctional compared to healthy individuals. Here we show significant differences in gut microbiome composition (16 S rRNA gene sequencing of stool samples) and NMR-based stool and serum metabolomes between a cohort of FD patients (~14% of patients worldwide) and their cohabitating, healthy relatives. We show that key observations in human subjects are recapitulated in a neuron-specificElp1-deficient mouse model, and that cohousing mutant and littermate control mice ameliorates gut microbiome dysbiosis, improves deficits in gut transit, and reduces disease severity. Our results provide evidence that neurologic deficits in FD alter the structure and function of the gut microbiome, which shifts overall host metabolism to perpetuate further neurodegeneration.

     
    more » « less
  3. Abstract

    We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle.

     
    more » « less
  4. Abstract

    Here we report the synthesis of a novel reagent designed to prepare 2-amino-5-nitrothiazole (ANT) amides and analogues in high yields. N-(Trimethylsilyl)-2-amino-5-nitrothiazole (N-(TMS)-ANT) was prepared in 99% yield via silylation of ANT using 1,1,1,3,3,3-hexamethyldisilazane (HMDS), trimethylsilyl chloride (TMSCl), and catalytic saccharin. N-(TMS)-ANT is a superb reagent for the preparation of ANT amides in excellent yields. Notably, cyclic anhydrides and base-sensitive acyl chlorides can be utilized with N-(TMS)-ANT to furnish ANT amides that are difficult to prepare by previously reported procedures.

     
    more » « less
  5. A rapid and highly practical one-flask procedure for the positionally selective preparation of (acyloxy)methyl N-(2- hydroxybenzyl)iminodiacetate and related diesters from iminodiacetic acid and phenols is described. The key to this multicomponent phenol-Mannich condensation resides in the use of cesium iminodiacetate as the reaction partner. This protocol has been applied in an unusually direct synthesis of the intracellular fluorescent dye Calcein blue AM, for which scant experimental and spectroscopic data are presently available. 
    more » « less
    Free, publicly-accessible full text available August 18, 2024
  6. Free, publicly-accessible full text available June 12, 2024
  7. Bladder cancer (BC) is frequent cancer affecting the urinary tract and is one of the most prevalent malignancies worldwide. No biomarkers that can be used for effective monitoring of therapeutic interventions for this cancer have been identified to date. This study investigated polar metabolite profiles in urine samples from 100 BC patients and 100 normal controls (NCs) using nuclear magnetic resonance (NMR) and two methods of high- resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS). Five urine metabolites were identified and quantified using NMR spectroscopy to be potential indicators of bladder cancer. Twenty-five LDI-MS-detected compounds, predominantly peptides and lipids, distinguished urine samples from BC and NCs individuals. Level changes of three characteristic urine metabolites enabled BC tumor grades to be distinguished, and ten metabolites were reported to correlate with tumor stages. Receiver-Operating Characteristics analysis showed high predictive power for all three types of metabolomics data, with the area under the curve (AUC) values greater than 0.87. These findings suggest that metabolite markers identified in this study may be useful for the non-invasive detection and monitoring of bladder cancer stages and grades. 
    more » « less
    Free, publicly-accessible full text available May 22, 2024
  8. Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut–brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut–brain–metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.

     
    more » « less
  9. We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.

     
    more » « less