skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characteristics of extreme daily precipitation events over the Canadian Arctic
Abstract Given growing interest in extreme high‐latitude weather events, we use records from nine meteorological stations and atmospheric reanalysis data to examine extreme daily precipitation events (leading, 99th and 95th percentile) over Arctic Canada. Leading events span 90 mm at Cape Dyer, along the southeast coast of Baffin Island, to 26 mm at Sachs Harbour, on the southwest coast of Banks Island. The 95th percentiles range from 20 to 30% of leading event sizes. Extreme events are most common on or near the month of climatological peak precipitation. Contrasting with Eurasian continental sites having a July precipitation peak corresponding to the seasonal peak in precipitable water, seasonal cycles in precipitation and the frequency of extremes over Arctic Canada are more varied, reflecting marine influences. At Cape Dyer and Clyde River, mean precipitation and the frequency of extremes peak in October when the atmosphere is quickly cooling, promoting strong evaporation from Baffin Bay. At all stations, leading events involved snowfall and strong winds and were associated with cyclone passages (mostly of relatively strong storms). They also involved strong vapour fluxes, sometimes associated with atmospheric rivers or their remnants. The most unusual sequence of events identified here occurred at Clyde River, where the three largest recorded precipitation events occurred in April of 1977. Obtaining first‐hand accounts of this series of events has proven elusive. Identified links between extreme events and atmospheric rivers demonstrates the need to better understand how the characteristics of such features will change in the future.  more » « less
Award ID(s):
1928230
PAR ID:
10388267
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
42
Issue:
16
ISSN:
0899-8418
Page Range / eLocation ID:
p. 10353-10372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers. 
    more » « less
  2. Abstract Paleoclimate data play a critical role in contextualizing recent hydroclimate extremes, but asymmetries in tree‐ring responses to extreme climate conditions pose challenges for reconstruction and interpretation of past climate. Here we establish the extent to which existing tree‐ring records capture precipitation extremes in western North America and evaluate climate factors hypothesized to lead to asymmetric extreme capture, including timing of precipitation, seasonal temperatures, snowpack, and atmospheric river events. We find that while there is dry‐biased asymmetry in one third of western North American tree‐ring records, 45% of sites capture wet extremes as well as or better than dry extremes. Summer extremes are rarely captured at any sites. Latitude and elevation affect site‐level extreme responses, as do seasonal climate conditions, particularly in the autumn and spring. Directly addressing asymmetric extreme value capture in tree‐ring records can aid our interpretation of past climate and help identify alternative avenues for future reconstructions. 
    more » « less
  3. From June 10-13 of 2022, an atmospheric river delivered heavy rain to high elevations around northern Yellowstone National Park (YNP), resulting in extreme flooding in the Yellowstone River basin below Yellowstone Lake. The extreme 2022 flood was only one of several historical events caused by high June temperatures and rapid snowmelt, with a variable component of rain on snow. Large and extreme floods on the Yellowstone River (YR) also occurred in June 1996 and 1918, allowing comparison of their magnitude, duration, and mechanisms of generation for the YR and its Lamar River and Soda Butte Creek tributaries. In 2022, peak discharge on the YR at Corwin Springs was 1550 m3/s, the flood of record and 170% of the 1996 peak, and Lamar River peak discharge was 172% of 1996 peak. In 1918, gaged discharge is only available for the YR at Corwin Springs, with significant uncertainty. On Soda Butte Creek, however, overbank gravels and indirect discharge estimates indicate that the 1918 peak discharge was conservatively 240% higher than 1996 and 127% higher than 2022. In 2022, flood duration above 700 m3/s at the YR Corwin Springs gage was only 2 days, compared to 9 days in 1996 and 14 days in 1918. In early June 1918 and 1996, snowpack was above average, and anomalously warm weather combined with relatively minor rainfall to produce long-duration flooding. In early June 2022, similarly high temperatures occurred, but snowpack was less than in 1918; early May snowpack in 2022 was 64% that of 1996. The June 10-13 atmospheric river released 5-10 cm of rain across northern YNP that added to snowmelt, producing a short duration but extremely high peak discharge. The 2022 flood caused major bank erosion especially in confined reaches but resulted in less floodplain disruption and overbank gravel deposition than in 1918 on the Lamar River and Soda Butte Creek. The potential exists for an even larger peak discharge than in 2022 if atmospheric river rainfall as in 2022 is superimposed on rapid melting of a deep snowpack, caused by the kind of unseasonable warmth that occurred in 1997 and 1918. Anthropogenic climate change is likely to increase the probability of extreme floods in YNP, as higher temperatures increase snowmelt rates, shift late-spring precipitation from snow to rain, and promote widespread intense rainfall including that from atmospheric rivers. 
    more » « less
  4. Arctic warming may lead to altered occurrences and strengthening of extreme weather events. Arctic rain-on-snow (ROS) events are of a particular interest in this regard. ROS conditions generate hazards for the transportation sector, ranging from flooding and icing to airport closures, and can severely damage infrastructure through wet-snow avalanches. ROS events, and the resulting ice growth, interfere with foraging by reindeer, caribou, and musk oxen, heavily relied upon species among Indigenous peoples. There have been documented mass starvations of these animals due to ROS. This study addresses the meteorological setups of Arctic ROS events. We focus on cases for Iqaluit, Nunavut, in Canada and Nuuk, Greenland, using ERA5 atmospheric reanalysis, surface weather station data, and atmospheric soundings. At the synoptic scale, we find that blocking patterns play leading roles in ROS initiation, with atmospheric rivers contributing to both direct and indirect effects. Cyclone-induced low-level jets and resultant “warm noses” of higher air temperatures and elevated moisture transport are other key features in ROS generation. We conclude by postulating how climate change may alter the severity and frequency of Arctic ROS events, drawing on this improved knowledge of weather patterns leading to ROS conditions. 
    more » « less
  5. Abstract We analyze the evolution of convective available potential energy (CAPE) and convective inhibition (CIN) in the days leading up to episodes of high CAPE in North America. The widely accepted theory for CAPE buildup, known as the advection hypothesis, states that high moist static energy (MSE) parcels of air moving north from the Gulf of Mexico become trapped under warm but dry parcels moving east from over elevated dry terrain. If and when the resulting CIN erodes, severe convection can occur due to the large energy difference between the boundary layer parcels and cool air aloft. However, our results, obtained via backward Lagrangian tracking of parcels at locations of peak CAPE, show that large values of CAPE are generated mainly via boundary layer moistening in the days leading up to the time of peak CAPE, and that a large portion of this moisture buildup happens on the day of peak CAPE. On the other hand, the free-tropospheric temperature above these tracked parcels rarely changes significantly over the days leading up to such occurrences. In addition, the CIN that allows for this buildup of CAPE arises mostly from unusually strong boundary layer cooling the night before peak CAPE, and has a contribution from differential advection of unusually warm air above the boundary layer to form a capping inversion. These results have important implications for the climatology of severe convective events, as it emphasizes the role of surface properties and their gradients in the frequency and intensity of high CAPE occurrences. Significance StatementSevere convective events, such as thunderstorms, tornadoes, and hail storms, are among the most deadly and destructive weather systems. Although forecasters are quite good at predicting the probability of these events a few days in advance, there is currently no reliable seasonal prediction method of severe convection. We show that the buildup of energy for severe convection relies on both strong surface evaporation during the day of peak energy and anomalous cooling the night before. This progress represents a step toward understanding what controls the frequency of severe convective events on seasonal and longer time scales, including the effect of greenhouse gas–induced climate change. 
    more » « less