skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Lignin, litter, and soil carbon decomposition from soil samples collected from 20 National Ecological Observatory Network (NEON) sites in 2019
We used incubations of soil and stable isotope measurements to measure lignin, litter, and SOC decomposition over an 18-month lab incubation and assessed their relationships with geochemical, microbial, N-related and climatic factors across 156 mineral soils collected from 20 National Ecological Observatory Network (NEON) sites, which span broad biophysical gradients (climate, soil, and vegetation type) across North America. The soils were collected in 2019. Lignin decomposition and biogeochemical variables were also measured in an approximately 12-month field incubation.  more » « less
Award ID(s):
1802745 1802728
NSF-PAR ID:
10388333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We incubated 10 forest soils (collected from sites across North America, including the Luquillo LTER/CZO) in the laboratory for over two years to quantify the decomposition of carbon derived from added litter and lignin, as well as from extant soil organic matter. Each soil was subjected to two substrate addition treatments: a) litter derived from a C4 grass precipitated with 13C-enriched lignin, or the same C4 grass litter was precipitated with natural-abundance lignin. The concentrations and delta13C composition of carbon dioxide produced from each soil were measured periodically over time and partitioned into sources (soil organic matter, litter, and added lignin) using isotope mixing models. The methods and results are described in detail by a manuscript in Ecology (Hall et al., 2020). 
    more » « less
  2. Abstract

    Lignin’s role in litter and soil organic carbon (SOC) decomposition remains contentious. Lignin decomposition was traditionally thought to increase during midstage litter decomposition, when cellulose occlusion by lignin began to limit mass loss. Alternatively, lignin decomposition could be greatest in fresh litter as a consequence of co‐metabolism, and lignin might decompose faster than bulk SOC. To test these competing hypotheses, we incubated 10 forest soils with C4grass litter (amended with13C‐labeled or unlabeled lignin) over 2 yr and measured soil respiration and its isotope composition. Early lignin decomposition was greatest in 5 of 10 soils, consistent with the co‐metabolism hypothesis. However, lignin decomposition peaked 6–24 months later in the other five soils, consistent with the substrate‐limitation hypothesis; these soils were highly acidic. Rates of lignin, litter, and SOC decomposition tended to converge over time. Cumulative lignin decomposition was never greater than SOC decomposition; lignin decomposition was significantly lower than SOC decomposition in six soils. Net nitrogen mineralization predicted lignin decomposition ratios relative to litter and SOC. Although the onset of lignin decomposition can indeed be rapid, lignin still presents a likely bottleneck in litter and SOC decomposition, meriting a reconsideration of lignin’s role in modern decomposition paradigms.

     
    more » « less
  3. Abstract Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems. 
    more » « less
  4. Abstract

    Confidence in model estimates of soil CO2flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data‐model fusion with modified versions of the CN‐SIM model and a 571‐day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These “lagged‐peak” samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest‐performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co‐metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth‐system models.

     
    more » « less
  5. Abstract

    Manganese (Mn) is an essential plant micronutrient that plays a critical role in the litter decomposition by oxidizing and degrading complex organic molecules. Previous studies report a negative correlation between Mn concentrations and carbon (C) storage in organic horizons and suggest that high Mn concentrations in leaf litter reduce soil C storage in forest ecosystems, presumably by stimulating the oxidation of lignin by fungal enzymes. Yet, the relationship between Mn and C in the litter layer and organic soil remains poorly understood and restricted to a few biomes, hampering our ability to improve mechanistic understanding of soil C accumulation. To examine plant‐soil interactions that underlie observed relationships between Mn and C across a wide range of biomes, we extracted biogeochemical data reported for plants and soils from the National Ecological Observatory Network (NEON) database. We found that increased C and nitrogen (N) storage in organic horizons were associated with declines in Mn concentrations across diverse ecosystems at the continental scale, and this relationship was associated with the degree of organic matter decomposition (i.e., Oi, Oe, and Oa). Carbon and N stocks were more strongly correlated with Mn than with climatic variables (i.e., temperature and precipitation). Foliar Mn was strongly correlated with foliar lignin, and both these parameters increased with a decrease in soil pH, indicating links between soil pH, foliar chemistry, and litter decomposability. Our observations suggest that increased Mn bioavailability and accumulation in foliage under moderately acidic soil conditions support fungal decomposition of lignin‐rich litter and contributes to lower soil C stocks.

     
    more » « less