- Award ID(s):
- 1919805
- NSF-PAR ID:
- 10388338
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1980
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.more » « less
-
Abstract Compared to many other rodent species, naked mole rats (
Heterocephalus glaber ) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus ), gerbils (Meriones unguiculatus ), and Damaraland mole rats (Fukomys damarensis ), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments. -
ABSTRACT Around the world and across taxa, subterranean mammals show remarkable convergent evolution in morphology (e.g., reduced external ears, small eyes, shortened limbs and tails). This is true of sensory systems as well (e.g., loss of object vision and high frequency hearing). The naked mole‐rat (
) displays these typical subterranean features, but also has unusual characteristics even among subterranean mammals. Naked mole‐rats are cold‐blooded, completely furless, very long‐lived (> 30 years), and eusocial (like termites). They also live in large colonies, which is very unusual for subterraneans. Their cortical organization has reduced area for visual processing, utilizing 30% more cortex for tactile processing. They are extremely tolerant to oxygen deprivation, and can recover from 18 min of anoxia. Their pain pathway is reduced and they feel no pain from acidosis. They are the only rodent tested to date whose pheromone‐detecting vomeronasal organ shows no postnatal growth. These features may be a result of this species' “extreme subterranean lifestyle” that combines living underground and living in large colonies. Many respiring animals cramped together in unventilated burrows elevates CO2levels, high enough to cause acidosis pain, and depletes O2concentrations low enough to kill other mammals. The naked mole‐rat may be an extreme model of adaptation to subterranean life and provides insights into the complex interplay of evolutionary adaptations to the constraints of subterranean living. Anat Rec, 2018. © 2018 American Association for Anatomy.Heterocephalus glaber -
Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical PainNaked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges.more » « less
-
null (Ed.)Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aβ) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aβ neurotoxicity. Here we examine the composition, phase behaviour, and Aβ interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the ‘membrane pacemaker’ hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aβ disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aβ exposure.more » « less