skip to main content


Title: Naked Mole‐Rats: Blind, Naked, and Feeling No Pain
ABSTRACT

Around the world and across taxa, subterranean mammals show remarkable convergent evolution in morphology (e.g., reduced external ears, small eyes, shortened limbs and tails). This is true of sensory systems as well (e.g., loss of object vision and high frequency hearing). The naked mole‐rat (Heterocephalus glaber) displays these typical subterranean features, but also has unusual characteristics even among subterranean mammals. Naked mole‐rats are cold‐blooded, completely furless, very long‐lived (> 30 years), and eusocial (like termites). They also live in large colonies, which is very unusual for subterraneans. Their cortical organization has reduced area for visual processing, utilizing 30% more cortex for tactile processing. They are extremely tolerant to oxygen deprivation, and can recover from 18 min of anoxia. Their pain pathway is reduced and they feel no pain from acidosis. They are the only rodent tested to date whose pheromone‐detecting vomeronasal organ shows no postnatal growth. These features may be a result of this species' “extreme subterranean lifestyle” that combines living underground and living in large colonies. Many respiring animals cramped together in unventilated burrows elevates CO2levels, high enough to cause acidosis pain, and depletes O2concentrations low enough to kill other mammals. The naked mole‐rat may be an extreme model of adaptation to subterranean life and provides insights into the complex interplay of evolutionary adaptations to the constraints of subterranean living. Anat Rec, 2018. © 2018 American Association for Anatomy.

 
more » « less
Award ID(s):
1655494
NSF-PAR ID:
10459498
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
303
Issue:
1
ISSN:
1932-8486
Page Range / eLocation ID:
p. 77-88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Naked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges. 
    more » « less
  2. Abstract Challenging environmental conditions can drive the evolution of extreme physiological traits. The naked mole-rat has evolved to survive and thrive in a low oxygen, high carbon dioxide environment that would be deadly to humans and most other mammals. The naked mole-rat’s lifestyle is unusual in that this species combines subterranean living and living in large, social groups of up to 300 + individuals. Many respiring animals in a closed environment can lead to depletion of oxygen (hypoxia) and accumulation of carbon dioxide (hypercapnia). Naked mole-rats display a variety of physiological traits that negate the adverse effects of living in this atmosphere. For hypoxia tolerance, naked mole-rats have a low resting metabolism, high affinity hemoglobin, intrinsic brain tolerance, the ability to use fructose for anaerobic glycolysis, and the ability to enter a low energy, suspended animation-like state. For hypercapnia tolerance, these animals have a mutation in a voltage gated sodium channel that effectively eliminates neuronal responses to tissue acidosis. In other mammals, acidosis from exposure to high concentrations of carbon dioxide induces pain and pulmonary edema. Understanding these mechanisms of extreme physiology is not only inherently interesting, but it may lead to biomedical breakthroughs in research on heart attacks, strokes, and pain pathologies. 
    more » « less
  3. The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions. 
    more » « less
  4. ABSTRACT

    The colonial naked mole ratHeterocephalus glaberis a subterranean, eusocial rodent. TheH. glabervomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine ifH. glabershares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth‐associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadultH. glaberindividuals. VNE volume measurements on a small sample ofCryptomys hottentotusandFukomys damarensisindicate that the VNE of those African mole rat species are also likely to be growth‐deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells. In this respect, the VNO ofH. glaberdoes not appear vestigial. The African mole rat VNE may be unusually variable, perhaps reflecting reduced selection pressure on the vomeronasal system. If so, African mole rats may provide a useful genetic model for understanding the morphological variability observed in the mammalian VNO. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:318–329, 2020. © 2019 American Association for Anatomy

     
    more » « less
  5. Abstract

    Compared to many other rodent species, naked mole rats (Heterocephalus glaber) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus), gerbils (Meriones unguiculatus), and Damaraland mole rats (Fukomys damarensis), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments.

     
    more » « less