skip to main content


Title: Exploring the Feasibility of a Thermoacoustic Metastructure for Energy Harvesting and Noise Mitigation
The thermoacoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This could enable the realization of mechanically-robust, noise mitigating energy harvesters via the development of thermoacoustic metastructures using additive and hybrid fabrication processes and materials. The mechanical, thermal and geometric properties of the porous stack that forms a set of acoustic waveguides in thermoacoustic metastructures are key to their performance. In this proof-ofconcept study, firstly, various ceramic and polymeric stack designs are evaluated using a custom-built thermoacoustic test rig. Influence of stack parameters such as material, length, location, porosity and pore geometry are correlated to simulations using DeltaEC, a software tool based on Rott’s linear approximation. Preliminary results also show a reduction in sound pressure level of around 5.28 dB across the thermoacoustic metastructure at resonance (117.5 Hz). An acousto-thermo-electric transduction scheme is employed to harvest useable electrical power using the best performing stack. Steady-state peak voltage generated was 33 mV for a temperature difference of about 30 degree Celsius across the stack at resonance. Further investigations are underway to establish structure-performance relationships by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies.  more » « less
Award ID(s):
2033399
NSF-PAR ID:
10388365
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of meetings on acoustics
ISSN:
1939-800X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The thermoacoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This enables the realization of mechanically robust, noise mitigating energy harvesters, although there are limitations to the power-to-volume ratio achievable. The mechanical, thermal, and geometric properties of the porous stack that forms a set of acoustic waveguides in thermoacoustic devices are key to its performance. In this feasibility study, first, various 4-in. diameter ceramic and polymeric stack designs are evaluated using a custom-built thermoacoustic test rig. Influence of stack parameters such as material, length, location, porosity, and pore geometry are correlated to simulations using DeltaEC, a software tool based on Rott’s linear approximation. An acousto-thermo-electric transduction scheme is employed to harvest useable electrical power using the best performing stack. Steady-state peak voltage generated was 33.5 mV for a temperature difference of 34 °C between thehot and cold sides of the stack at an acoustic excitation frequency of 117.5 Hz. Further investigations are underway to establish structure-performance relationships by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies. 
    more » « less
  2. The thermo-acoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This is especially useful to construct mechanically-simple and robust energy harvesting devices, although there are limitations to the power-to-volume ratio achievable. The mechanical and thermal properties as well as geometry of the porous stack that forms a set of acoustic waveguides in thermo-acoustic devices are key to its performance. In this study, we evaluate various additively manufactured polymer stacks against more conventional ceramic stacks using a benchtop thermos-acoustic refrigerator rig that uses air at ambient pressure as its working fluid. Influence of stack parameters such as material, length, location, porosity and pore geometry are examined using experiments and correlated to simulations using DeltaEC, a software tool based on Rott's linear approximation. Structure-performance relationships are established by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies. It is found that additively manufactured stacks can deliver performance comparable to ceramic stacks while being more affordable and customizable for thermo-acoustic transduction applications. 
    more » « less
  3. Thermoacoustic refrigerators exploit the thermodynamic interaction between oscillating gas particles and a porous solid to generate a temperature gradient that provides a cooling effect. In this work, we present a resonator with dual enclosed driver end-caps and show that the temperature gradient across a ceramic thermoacoustic element placed in the cavity could be controlled by modifying the phase difference of the drivers, thus enabling precise control of the refrigeration capability via the temperature difference. Through DELTAEC simulation results, the response of the temperature gradient to various dynamic boundary conditions that alter the time-phasing and wave dynamics in the resonator are demonstrated. An experimental apparatus is constructed with two moving-coil speakers and a ceramic stack, which is shown to exhibit a temperature gradient along its length, based on the traveling-wave-like nature of the acoustic wave excited by the speakers. By adjusting the relative phase lag between the two speakers, the temperature gradient across the stack is made to increase, decrease, or flip sign. Finally, a desired temperature difference that changes in time is achieved. The results presented in this work represent a key conceptual advancement of thermoacoustic-based temperature control devices that can better serve in extreme environments and precision applications. 
    more » « less
  4. Abstract

    Boiling is a high-performance heat dissipation process that is central to electronics cooling and power generation. The past decades have witnessed significantly improved and better-controlled boiling heat transfer using structured surfaces, whereas the physical mechanisms that dominate structure-enhanced boiling remain contested. Experimental characterization of boiling has been challenging due to the high dimensionality, stochasticity, and dynamicity of the boiling process. To tackle these issues, this paper presents a coupled multimodal sensing and data fusion platform to characterize boiling states and heat fluxes and identify the key transport parameters in different boiling stages. Pool boiling tests of water on multi-tier copper structures are performed under both steady-state and transient heat loads, during which multimodal, multidimensional signals are recorded, including temperature profiles, optical imaging, and acoustic signals via contact acoustic emission (AE) sensors, hydrophones immersed in the liquid pool, and condenser microphones outside the boiling chamber. The physics-based analysis is focused on i) extracting dynamic characteristics of boiling from time lags between acoustic-optical-thermal signals, ii) analyzing energy balance between thermal diffusion, bubble growth, and acoustic dissipation, and iii) decoupling the response signals for different physical processes, e.g., low-to-midfrequency range AE induced by thermal expansion of liquids and bubble ebullition. Separate multimodal sensing tests, namely a single-phase liquid test and a single-bubble-dynamics test, are performed to reinforce the analysis, which confirms an AE peak of 1.5 kHz corresponding to bubble ebullition. The data-driven analysis is focused on enabling the early fusion of acoustic and optical signals for improved boiling state and flux predictions. Unlike single-modality analysis or commonly-used late fusion algorithms that concatenate processed signals in dense layers, the current work performs the fusion process in the deep feature domain using a multi-layer perceptron regression model. This early fusion algorithm is shown to lead to more accurate and robust predictions. The coupled multimodal sensing and data fusion platform is promising to enable reliable thermal monitoring and advance the understanding of dominant transport mechanisms during boiling.

     
    more » « less
  5. Abstract The dynamic behavior of the interface between the lithium metal electrode and a solid-state electrolyte plays a critical role in all-solid-state battery performance. The evolution of this interface throughout cycling involves multiscale mechanical and chemical heterogeneity at the micro- and nano-scale. These features are dependent on operating conditions such as current density and stack pressure. Here we report the coupling of operando acoustic transmission measurements with nuclear magnetic resonance spectroscopy and magnetic resonance imaging to correlate changes in interfacial mechanics (such as contact loss and crack formation) with the growth of lithium microstructures during cell cycling. Together, the techniques reveal the chemo-mechanical behavior that governs lithium metal and Li 7 La 3 Zr 2 O 12 interfacial dynamics at various stack pressure regimes and with voltage polarization. 
    more » « less