skip to main content


Search for: All records

Award ID contains: 2033399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The thermoacoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This could enable the realization of mechanically-robust, noise mitigating energy harvesters via the development of thermoacoustic metastructures using additive and hybrid fabrication processes and materials. The mechanical, thermal and geometric properties of the porous stack that forms a set of acoustic waveguides in thermoacoustic metastructures are key to their performance. In this proof-ofconcept study, firstly, various ceramic and polymeric stack designs are evaluated using a custom-built thermoacoustic test rig. Influence of stack parameters such as material, length, location, porosity and pore geometry are correlated to simulations using DeltaEC, a software tool based on Rott’s linear approximation. Preliminary results also show a reduction in sound pressure level of around 5.28 dB across the thermoacoustic metastructure at resonance (117.5 Hz). An acousto-thermo-electric transduction scheme is employed to harvest useable electrical power using the best performing stack. Steady-state peak voltage generated was 33 mV for a temperature difference of about 30 degree Celsius across the stack at resonance. Further investigations are underway to establish structure-performance relationships by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies. 
    more » « less
  2. The thermoacoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This enables the realization of mechanically robust, noise mitigating energy harvesters, although there are limitations to the power-to-volume ratio achievable. The mechanical, thermal, and geometric properties of the porous stack that forms a set of acoustic waveguides in thermoacoustic devices are key to its performance. In this feasibility study, first, various 4-in. diameter ceramic and polymeric stack designs are evaluated using a custom-built thermoacoustic test rig. Influence of stack parameters such as material, length, location, porosity, and pore geometry are correlated to simulations using DeltaEC, a software tool based on Rott’s linear approximation. An acousto-thermo-electric transduction scheme is employed to harvest useable electrical power using the best performing stack. Steady-state peak voltage generated was 33.5 mV for a temperature difference of 34 °C between thehot and cold sides of the stack at an acoustic excitation frequency of 117.5 Hz. Further investigations are underway to establish structure-performance relationships by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies. 
    more » « less
  3. The thermo-acoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This is especially useful to construct mechanically-simple and robust energy harvesting devices, although there are limitations to the power-to-volume ratio achievable. The mechanical and thermal properties as well as geometry of the porous stack that forms a set of acoustic waveguides in thermo-acoustic devices are key to its performance. In this study, we evaluate various additively manufactured polymer stacks against more conventional ceramic stacks using a benchtop thermos-acoustic refrigerator rig that uses air at ambient pressure as its working fluid. Influence of stack parameters such as material, length, location, porosity and pore geometry are examined using experiments and correlated to simulations using DeltaEC, a software tool based on Rott's linear approximation. Structure-performance relationships are established by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies. It is found that additively manufactured stacks can deliver performance comparable to ceramic stacks while being more affordable and customizable for thermo-acoustic transduction applications. 
    more » « less