skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis
Carbon-supported nanocomposites are attracting particular attention as high-performance, low-cost electrocatalysts for electrochemical water splitting. These are mostly prepared by pyrolysis and hydrothermal procedures that are time-consuming (from hours to days) and typically difficult to produce a nonequilibrium phase. Herein, for the first time ever, we exploit magnetic induction heating-quenching for ultrafast production of carbon-FeNi spinel oxide nanocomposites (within seconds), which exhibit an unprecedentedly high performance towards oxygen evolution reaction (OER), with an ultralow overpotential of only +260 mV to reach the high current density of 100 mA cm -2 . Experimental and theoretical studies show that the rapid heating and quenching process (ca. 10 3 K s -1 ) impedes the Ni and Fe phase segregation and produces a Cl-rich surface, both contributing to the remarkable catalytic activity. Results from this study highlight the unique advantage of ultrafast heating/quenching in the structural engineering of functional nanocomposites to achieve high electrocatalytic performance towards important electrochemical reactions.  more » « less
Award ID(s):
1900235
NSF-PAR ID:
10388374
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Research
Volume:
2022
ISSN:
2639-5274
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon-based nanocomposites have been attracting extensive attention as high-performance catalysts in alkaline media towards the electrochemical reduction of oxygen. Herein, polyacrylonitrile nanoflowers are synthesized via a free-radical polymerization route and used as a structural scaffold and precursor, whereby controlled pyrolysis leads to the ready preparation of carbon nanocomposites (FeNi-NCF) doped with both metal (Fe and Ni) and nonmetal (N) elements. Transmission electron microscopy studies show that the FeNi-NCF composites retain the flower-like morphology, with the metal species atomically dispersed into the flaky carbon petals. Remarkably, despite a similar structure, elemental composition, and total metal content, the FeNi-NCF sample with a high Fe:Ni ratio exhibits an electrocatalytic performance towards oxygen reduction reaction (ORR) in alkaline media that is similar to that by commercial Pt/C, likely due to the Ni to Fe electron transfer that promotes the adsorption and eventual reduction of oxygen, as evidenced in X-ray photoelectron spectroscopic measurements. Results from this study underline the importance of the electronic properties of metal dopants in the manipulation of the ORR activity of carbon nanocomposites. 
    more » « less
  2. Carbon nanocomposites based on transition-metal oxides have been attracting extensive attention as cost-effective catalysts towards the oxygen reduction reaction (ORR). However, the activity remains subpar as compared to state-of-the-art platinum catalysts. One way to enhance the ORR performance is to dope a second metal into the nanocomposite to manipulate the electronic structure and hence the interactions with key reaction intermediates. Herein, dual metal (Ru and Fe) and nitrogen codoped carbon (RuFe-NC) nanocomposites were synthesized by controlled pyrolysis of a Fe–Ru–Fe trinuclear complex along with zeolitic imidazolate framework-8. The obtained porous nanocomposites consisted of Ru-doped Fe 2 O 3 nanoparticles embedded within a carbon scaffold, and exhibited an ORR activity in alkaline media rivaling that of commercial Pt/C, which was also markedly better than those of the monometallic counterparts and nanocomposites prepared with a simple mixture of the individual monometallic compound precursors. Structural characterization suggests that the use of the trinuclear complex facilitated the atomic dispersion of ruthenium within the iron oxide nanoparticles and charge transfer between the metal centers led to a high ORR activity. Results from this study suggest that rational design of heteronuclear complexes may be a unique strategy in the structural engineering of carbon-metal nanocomposites for high-performance electrocatalysis. 
    more » « less
  3. Silicon/graphite (Si/Gr) nanocomposites with controlled void spaces and encapsulated by a carbon shell (Si/Gr@void@C) are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale, followed by carbonization of polydopamine (PODA) to form a carbon shell, and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures. In particular, the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated. Increasing the ball milling time results in the improved specific capacity of Si-based anodes. Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles. The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80 C, leading to little or no capacity decay over 130 cycles. However, it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling. The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies. The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future. 
    more » « less
  4. Abstract

    Flash pyrolysis, which combines conventional pyrolysis with flash sintering, was first conducted to produce polymer derived SiC‐TiC nanocomposites. Pre‐pyrolysis at 800℃ allows the conversion from titanium isopropoxide (TTIP) modified polysiloxane to an amorphous SiTiOC ceramic. The subsequent application of an electric field gives rise to the formation of turbostratic carbon and creates Joule heating to obtain a sample internal temperature of ~1400℃. The precipitation of β‐SiC, TiC, as well as titanium oxides is realized upon carbothermal reduction of extensively phase separated SiO2and TiO2with carbon. Increasing TTIP content embodies the nanocomposites with prominent electrical percolation behaviors. The electrical transport of the synthesized ceramics follows an amorphous semiconductor mechanism. High thermal stability in air is guaranteed, thanks to the in‐situ formed TiC nanocrystals and preferentially reduced amorphous carbon. Flash pyrolyzed nanocomposite with a Ti:Si molar ratio of 0.20 exhibits the highest electrical conductivity (0.696 S/cm) and minimum mass change (~2%) at 1000℃, serving as a competitive candidate for electro‐discharge machining (EDM) applications or self‐standing conducting devices that must withstand high temperature conditions.

     
    more » « less
  5. null (Ed.)
    Carbon-based catalysts have been attracting extensive attention as viable candidates to replace platinum towards oxygen reduction reaction, a critical process at fuel cell cathode. An advancement has been the development of carbon-supported iron carbide (Fe3C/C) catalysts derived from the pyrolysis of metal organic frameworks (MOFs). In the present study, a series of Fe3C/C nanocomposites were prepared by controlled pyrolysis of FeMOF-NH2 with a systemic variation of the iron and zinc compositions in the MOF precursor. Scanning/transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopic measurements were carried out to examine the morphologies, structures, and elemental composition of the nanocomposites, while nitrogen adsorption/desorption and Raman studies were used to characterize the surface area and porosity. It was found that an optimal zinc to iron feeding ratio was required to produce a catalyst with a preferential pore size distribution. Electrochemical measurements revealed that the sample derived from 20% zinc replacement in the FeMOF-NH2 precursor exhibited the best electrocatalytic activity in alkaline media among the series, with the most positive onset potential and highest limiting current, which coincided with the highest surface area and porosity. The results suggest that deliberate structural engineering is critical in manipulating and optimizing the electrocatalytic activity of metal,nitrogen-codoped carbon nanocomposites. 
    more » « less