skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building Capacity: Enhancing Undergraduate STEM Education by Improving Transfer Success
A combination of strategies was implemented to reduce barriers to transfer from associate to baccalaureate programs, and baccalaureate degree completion. These strategies include creation of the STEM Transfer Collaborative (STC). an adaption of the CUNY Pathways articulation initiative. Components of the STC include articulation agreements, shared professional development to align pedagogy and curriculum, outreach and collaboration by both the sending and receiving college faculty to begin transfer preparation and support before transfer occurs, and regular updates to community college faculty on the success of their transfer students. The second strategy employed is Momentum to the Baccalaureate (MB), an adaption of the CUNY Accelerated Study in Associate Programs (ASAP). MB provides support for junior and senior-level transfer students who are either community colleges associate degree graduates (external transfer) or associate degree graduates who transferred to bachelor’s programs at the same comprehensive college they earned their associate degree at, which has a 2+2 degree structure (internal transfer). Components of MB include personalized mentoring, advisement, and monthly stipends to students who maintain full-time enrollment and good academic standing. Participating majors include computer engineering technology, computer systems technology, construction management and civil engineering technology, electrical engineering technology, and applied chemistry. Propensity matching was used to evaluate the effectiveness of these strategies. Participating campuses are part of the City University of New York (CUNY), and include six community colleges (Borough of Manhattan Community College, Bronx Community College, Guttman Community College, Hostos Community College, Kingsborough Community College, and LaGuardia Community College), five of which are Hispanic Serving Institutions (HSIs), and New York City College of Technology (City Tech), also an HSI, which offers associate and bachelor’s programs (2+2 structure). Our first cohort of 40 students started upper-level studies in fall 2019, and has completed 2 years (four semesters) of post-associate degree study. The second cohort of 40 students, started in fall 2020, and has completed one year (two semesters) of post-associate degree study. Cohort 1 students receiving MB, supports had a significantly higher graduation rate after two years than the college average. Additionally, for cohort 1, the STC seems to have reduced “transfer shock,” the typical drop in GPA the first semester after transfer. There was no statistical difference in GPA, credits completed and semester-to-semester persistence of internal and external transfers in the MB program. Cohort 1 external transfer students who received support though MB also had a statistically significant improvement in their semester GPAs for their first 3 semesters at City Tech compared to matched students who were not provided support in the junior and senior years. There was no statistically significant difference by the 4th semester. Cohort 2 internal transfers receiving MB supports in their junior year had a statistically significant improvement in credits earned and persistence compared to a matched cohort without MB supports. There was no statistically significant improvement of external transfers compared to a matched cohort, who did not receive MB supports The inability of external transfer students to come to campus due to the pandemic, may have negated the sense of community and belonging that MB was intended to create. Overall, these preliminary results suggest that targeted pre-transfer and post-transfer supports improve transfer student outcomes. This project (NSF grant #1832457) was funded through the NSF Division of Education, Improving Undergraduate STEM Education: Hispanic-Serving Institutions Program.  more » « less
Award ID(s):
1832457
PAR ID:
10388395
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition, Minneapolis, MN
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guided by the notion of academic momentum, this study drew data from longitudinal transcript records at a large public 4-year research university and examined factors that specifically contribute to community college transfer students’ academic momentum. It also explored how early academic momentum along with students’ sociodemographic characteristics impact degree attainment in science, technology, engineering, and mathematics (STEM) fields of study. This study conducted multinomial logistic regression analysis and found that certain students’ background characteristics (i.e., gender, age, and family income), community college academic achievement (i.e., associate degree completion, and number of community college credits accepted), and early academic performance at the 4-year university (math and English preparedness, number of credit hours attempted, and first-semester grade point average) were significantly related to transfer students’ likelihood of obtaining a STEM degree. The findings provide new knowledge about academic momentum and could be used to enhance the community college pathway to STEM degree completion. 
    more » « less
  2. The transfer pathway in engineering disciplines, especially for low-income students, is often seen as an opportunity to expand the science and engineering workforce, particularly when transferring from a two-year community college to a four-year institution. This study focused on low-income transfer students’ motivational factors that led them to choose and continue to pursue an engineering baccalaureate degree(s). This studied used Eccles's (1983) expectancy-value theory of motivation as the guiding theoretical framework to show the relationship between competence and value beliefs as the motivated actions towards earning an engineering degree. It relates competence to, “Can I earn an engineering degree?” and task value beliefs to, “Do I want to earn an engineering degree?” Twenty students (12 first-year and 8 second-year low-income engineering transfer students) were interviewed about their experiences in engineering. Additionally, these twenty students completed a survey collecting data on their demographics, recognition, social belongingness, performance, and value beliefs. A qualitative analysis showed that students mainly chose to pursue a baccalaureate degree in engineering due to the financial reward, family influences, faculty support, and early childhood interest. Furthermore, students’ motivation to continue to pursue an engineering degree was attributed to prestige, engineering experiences acquired, financial and academic support, faculty and peer support, and gain of engineering knowledge throughout their academic journey. Implications of the study were: a) a set of small samples of data was analyzed, and b) examination of students belonging to a specific cohort. This cohort was provided with financial and academic support to navigate through their studies. Future studies could consist of various topics. For example, a longitudinal research study is required to track students’ motivation and how it transitions over time. Also, a study that compares two-year community college students transferring to a four-year institution who received financial support by applying for it versus students that were provided with a full financial tuition package. Furthermore, a research study about low-income engineering transfer students who do not belong to a cohort and are not receiving financial support. Overall, the study intended to further explore low-income engineering transfer student’s experiences, in terms of motivation, which led them to choose and continue to pursue engineering. 
    more » « less
  3. This paper reports on the culmination of an NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) awarded to a two-year college located in a metro area with high rates of concentrated poverty and low levels of educational attainment. This two-year college is a minority-serving institution with curriculum to prepare students majoring in engineering to transfer and complete a baccalaureate degree at a four-year university. The Engineering Scholars Program (ESP) was established in fall 2019 to award students majoring in engineering annual scholarships of up to $6000, depending on financial need. In addition to supporting students through scholarships, the program engages scholars in professional development activities inclusive of academic seminars, extracurricular events, and undergraduate research opportunities in collaboration with the local four-year university. The program also established a mentorship structure with faculty mentors, student peer mentors, and academic advising. In addition to supporting scholars at the two-year college, the ESP provides support for a portion of cohorts that have transferred to the local four-year university and remained connected to the program. To date, the ESP has awarded a total of 131 semester long scholarships; 16 in year one (2019-2020), 28 in year two (2020-2021), 35 in year three (2021-2022), including six transfers, 38 in year four (2022-2023), including eight transfers, and 28 in year five (2023-2024), including 10 transfers. In year three, the ESP was awarded supplemental funding to support a larger portion of students and transfer cohorts; this helped reduce the financial burdens resulting from exacerbated financial needs due to the COVID-19 pandemic during years two and three of this project. This paper details the progress made towards the achievement of the program goals of creating a welcoming STEM climate at the two-year college, increasing the participation and persistence in engineering among economically disadvantaged students, and establishing transfer support to the local four-year university. Program evaluation findings have identified several opportunities for sustaining scholar transfer support outside of the financial support provided in the form of scholarships. These opportunities fell into two major themes: (1) peer-led transfer support inclusive of connecting transferred students and students preparing for transfer with emphasis on navigating different university structures, and (2) collaboration across engineering disciplines to develop and offer interdisciplinary undergraduate research and/or collaborative work on other projects. Furthermore, research findings from interviews with scholars provided additional context for taking action on program outcomes while also enhancing the understanding of how participation in a collaborative cohort experience can contribute to students’ membership within the STEM community and the construction of their own STEM identity. Although formal financial support sunsets during the final year of the ESP, program and research findings have identified programmatic elements that provide key support for students and can be sustained into the future. This paper reports on the program strategy for meeting the future needs of scholars at both the two-year college and the four-year transfer university. 
    more » « less
  4. This paper reports on the first phase of research on a scholarship program VTAB (Vertical Transfers’ Access to the Baccalaureate) funded by a five-year grant from the National Science Foundation (NSF) that focuses on students who transfer at the 3rd year level from 2-year schools to the engineering and engineering technology BS programs at our university [1]. The goals of the program are: (i) to expand and diversify the engineering/technology workforce of the future, (ii) to develop linkages and articulations with 2-year schools and their S-STEM programs, (iii) to recruit, retain, and graduate 78 low-income students, and place them in industry or graduate schools, (iv) to generate knowledge about the program elements that can help other universities, and (v) to serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. 
    more » « less
  5. This paper introduces two scholarship projects funded by the National Science Foundation that focus on students who transfer at the 3rd year level from 2-year schools to the engineering and engineering technology BS programs at our university. The objectives of both the projects are: (i) to expand and diversify the engineering/technology workforce of the future, (ii) to develop linkages and articulations with 2-year schools and their S-STEM programs, (iii) to provide increased career opportunities and job placement rates through mandatory paid co-op experiences, and (iv) to serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. The Transfer Pipeline (TiPi) project awarded 25 new scholarships per year from 2012 to 2014 to a total of 75 engineering and engineering technology transfer students. By the end of Fall 2017, 66 (88%) scholars have graduated, 5 (7%) are in process of completing their degrees, and only 4 (5%) left our university, for a 95% retention rate. The paper describes our successes and challenges. The Vertical Transfer Access to the Baccalaureate (VTAB) project recruited its first group of 25 students in Fall 2017 with the goal of recruiting a total of 78 vertical transfers over the next three years. An additional goal of the VTAB project is to conduct research and generate knowledge about the VTAB project elements that will be essential for the success of vertical transfer programs at other universities. The paper describes the research instruments, and the results from an online survey and a focus group interview of the first cohort of VTAB scholars. 
    more » « less