skip to main content

This content will become publicly available on August 1, 2023

Title: Building Capacity: Enhancing Undergraduate STEM Education by Improving Transfer Success
A combination of strategies was implemented to reduce barriers to transfer from associate to baccalaureate programs, and baccalaureate degree completion. These strategies include creation of the STEM Transfer Collaborative (STC). an adaption of the CUNY Pathways articulation initiative. Components of the STC include articulation agreements, shared professional development to align pedagogy and curriculum, outreach and collaboration by both the sending and receiving college faculty to begin transfer preparation and support before transfer occurs, and regular updates to community college faculty on the success of their transfer students. The second strategy employed is Momentum to the Baccalaureate (MB), an adaption of the CUNY Accelerated Study in Associate Programs (ASAP). MB provides support for junior and senior-level transfer students who are either community colleges associate degree graduates (external transfer) or associate degree graduates who transferred to bachelor’s programs at the same comprehensive college they earned their associate degree at, which has a 2+2 degree structure (internal transfer). Components of MB include personalized mentoring, advisement, and monthly stipends to students who maintain full-time enrollment and good academic standing. Participating majors include computer engineering technology, computer systems technology, construction management and civil engineering technology, electrical engineering technology, and applied chemistry. Propensity matching was used more » to evaluate the effectiveness of these strategies. Participating campuses are part of the City University of New York (CUNY), and include six community colleges (Borough of Manhattan Community College, Bronx Community College, Guttman Community College, Hostos Community College, Kingsborough Community College, and LaGuardia Community College), five of which are Hispanic Serving Institutions (HSIs), and New York City College of Technology (City Tech), also an HSI, which offers associate and bachelor’s programs (2+2 structure). Our first cohort of 40 students started upper-level studies in fall 2019, and has completed 2 years (four semesters) of post-associate degree study. The second cohort of 40 students, started in fall 2020, and has completed one year (two semesters) of post-associate degree study. Cohort 1 students receiving MB, supports had a significantly higher graduation rate after two years than the college average. Additionally, for cohort 1, the STC seems to have reduced “transfer shock,” the typical drop in GPA the first semester after transfer. There was no statistical difference in GPA, credits completed and semester-to-semester persistence of internal and external transfers in the MB program. Cohort 1 external transfer students who received support though MB also had a statistically significant improvement in their semester GPAs for their first 3 semesters at City Tech compared to matched students who were not provided support in the junior and senior years. There was no statistically significant difference by the 4th semester. Cohort 2 internal transfers receiving MB supports in their junior year had a statistically significant improvement in credits earned and persistence compared to a matched cohort without MB supports. There was no statistically significant improvement of external transfers compared to a matched cohort, who did not receive MB supports The inability of external transfer students to come to campus due to the pandemic, may have negated the sense of community and belonging that MB was intended to create. Overall, these preliminary results suggest that targeted pre-transfer and post-transfer supports improve transfer student outcomes. This project (NSF grant #1832457) was funded through the NSF Division of Education, Improving Undergraduate STEM Education: Hispanic-Serving Institutions Program. « less
Award ID(s):
Publication Date:
Journal Name:
2022 ASEE Annual Conference & Exposition, Minneapolis, MN
Sponsoring Org:
National Science Foundation
More Like this
  1. Wright College, an urban open-access community college, independently accredited within the City Colleges of Chicago (CCC) system, is a federally recognized Hispanic-Serving Institution (HSI) with one of the largest community college enrollments of Hispanic students in Illinois. Wright College’s student success rates measured by completion have been strong and improving relative to other national urban community colleges, but are below state and national averages. In 2015 the college piloted a selective guaranteed admission program, Engineering Pathways (EP), to one of the nation’s top engineering schools (The Grainger College of Engineering at the University of Illinois Urbana Champaign, UIUC). Initial results for the small first-year cohort were very positive: 89% transfer rate and all students who transferred to UIUC graduated. The program’s initial success rested on a) cohort model with a small number of students and strong controls; b) co-branding that attracted local students interested in pursuing engineering at UIUC who might not otherwise have enrolled at Wright; c) academic rigor (small class size with Wright College’s curricula matching UIUC); d) robust student support services and structures; and e) a holistic college commitment to equity and inclusive excellence. Wright College obtained a National Foundation Science (NSF)-HSI research grant in 2018 tomore »support the Engineering Pathways. The grant examines EP students’ self-efficacy and sense of belonging. Wright College foregrounds student “belonging” in its equity efforts. Equity work calls for the systemic analysis and tracking of student performance, engagement and participation throughout the student life-cycle, with data-informed analysis of behavior and outcomes through a lens of race, gender and wealth. EP students shared similar racial and ethnic backgrounds as Wright College’s non-engineering students. They attended the same elementary and public schools, have similar family structures, socioeconomic status (SES) and supports. NSF resources assisted Wright College’s creation of a contextualized engineering summer bridge and a more structured pre-engineering program. As enrollment in the EP program increased, the college dedicated additional resources, including faculty, enhanced student support, and guaranteed junior-level transfer to other nearby baccalaureate engineering schools. Central to the effort was significantly greater structure and monitoring of student performance, including academic and support frameworks for non-EP students. Wright College and baccalaureate transfer institutions reviewed and updated articulation agreements. In the Engineering Summer Bridge Program’s first two years, forty-five (45) students who would otherwise have been denied admission to EP are thriving and are positioned to transfer to four-year engineering programs. In this paper, Wright College will review the college’s equity efforts, the structure and implementation of the Engineering Pathways, and the creation of new engineering transfer programs. It will explore visible and invisible barriers to students’ success, contrasting students in Wright College’s EP program with other Wright College students. The authors argue that the systemic pursuit of equity, particularly with a focus on self-efficacy, belonging, and the creation of an environment committed to inclusive excellence, will result in very strong student outcomes.« less
  2. Wright College, an open-access community college in northwest Chicago, is an independently accredited institution in the City Colleges of Chicago (CCC) system. Wright is federally recognized Hispanic-Serving Institution (HSI) with the largest enrollment of Hispanic students in Illinois. In 2015 Wright piloted a selective guaranteed admission program to the Grainer College of Engineering at the University of Illinois at Urbana-Champaign (UIUC). Students in the Engineering Pathways (EP) program follow a cohort system with rigorous curriculum aligned to UIUC. From this pilot Wright built programmatic frameworks (one-stop intentional advising; mandatory tutoring, near-peer, faculty and professional mentoring; and access to professional organizations) to support EP students. Initial results were positive: 89% transfer rate and 89% bachelor’s degree completion. Building from the EP frameworks, Wright obtained a National Science Foundation (NSF) HSI research grant to expand programs to non-pathway students. Through the grant, Building Bridges into Engineering and Computer Science, the college developed assessment tools, increased the number of 4-year partnerships, and designed and implemented an Engineering Summer Bridge with curriculum contextualized for the needs of the Near-STEM ready students. These students need one to four semesters of Math remediation before moving into the EP. The college measured the Bridge participants' success throughmore »analysis of Math proficiency before and after the Bridge, professional identity (sense of belonging) and self-efficacy (the belief that the students will succeed as engineers). Surveys and case study interviews are being supplemented with retention, persistence, transfer, associate and bachelor degree completion rates, and time for degree completion. The key research question is the correlation of these data with self-efficacy and professional identity measures. Preliminary Results: 1) Sixty percent (60%) of the Bridge participants eliminated the remedial Math requirement completely. (Increased Math proficiency) 2) Engineering admission and enrollment doubled. 4) Increased institutionalized collaborations: the creation of a more programmatic admission, advising, transfer, rigorous curriculum, and other student support services within the College. 5) Increased partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. 5) Increased diversity in Engineering and Computer Science student population. Wright will share an overview of the Building Bridges into Engineering and Computer Science project, research design, expanded practices, assessments and insights from the development and implementation of this program. The developed frameworks will be applied to provide ALL students at Wright, and at CCC equitable Engineering and Computer Science education.« less
  3. ABET lists the ability to communicate in writing to both technical and non-technical audiences as a required outcome for baccalaureate engineering students [1]. From emails and memos to formal reports, the ability to communicate is vital to the engineering profession. This Work in Progress paper describes research being done as part of an NSF-funded project, Writing Assignment Tutor Training in STEM (WATTS). The method is designed to improve feedback writing tutors without technical backgrounds give to engineering students on technical reports. Students in engineering programs have few opportunities to develop their writing skills. Usually, composition courses are part of the general education curriculum. Students often see these courses as unrelated to their majors and careers [2]. Ideally, writing support should be integrated throughout a program. Since WATTs capitalizes on existing resources and requires only a modest amount of faculty time, it could enable engineering programs to provide additional writing support to students in multiple courses and provide a bridge for them to see the connection between writing concepts learned in composition courses and their technical reports. WATTS was developed in a junior-level circuit analysis course, where students were completing the same lab and writing individual reports. This paper focuses onmore »a senior capstone course that utilizes concepts taught in previous courses to prepare students to complete an independent team research or design project. Projects are unique, usually based on the needs of an industrial sponsor, and are completed over three consecutive semesters. Each semester, teams write a report based on their activities during that semester, with a comprehensive report in the final semester. The multi-semester nature of the senior design project provides an opportunity for the researchers to chart longitudinal changes from the first to the students’ third semester interactions with the writing tutors, assessing the value of an integrated approach. The program’s impact on students’ attitudes toward revision and the value of tutoring, as well as the impact on tutors, are part of the assessment plan. The program hopes to change the students’ focus from simply presenting their results to communicating them. The goals of the project are to demonstrate to students that revision is essential to the writing process and that feedback can improve their written communication abilities. The expectation is that after graduation they will continue to seek critical feedback as part of their career growth. Surveys given to both students and tutors revealed that the sessions were taken seriously by the students and that meaningful collaboration was achieved between them. An evaluation of the writing in pre-tutored to final submitted report shows statistically significant improvement. Preliminary and current results will be included within the paper. [1] Criteria for Accrediting Engineering Technology Programs, ABET, Baltimore, MD., 2020, p.5, ETAC Criteria ( [2] Bergmann, L. S. and Zepernick, J., “Disciplinarity and Transfer: Students’ Perceptions of Learning to Write,” Writing Program Administration, 31, Fall/Winter 2007.« less
  4. This complete research paper discusses how students’ feelings of inclusion change throughout their undergraduate career. Student responses acquired through focus groups and one-on-one interviews were examined to determine how included the students felt in their engineering college and also the broader scientific community. A small group of non-calculus ready engineering students enrolled in a large land grant institution in the Mid-Atlantic region consented to participate in the study. The student cohort participated in an NSF S-STEM funded program aimed at fostering a sense of inclusion in engineering by implementing a curriculum focused on cohort formation, career exploration, and professional development. The AcES, consisting of a weeklong pre-fall bridge experience, two common courses, and a variety of co-curricular activities, has been operating for eight years. Students who receive S-STEM funded scholarships participate in three focus groups and two one-on-one interviews each semester throughout their undergraduate studies. Student responses from the one-on-one interviews and focus groups conducted from 2017-2020 were examined with qualitative coding methods. Questions examined in this work include: 1) Did the engineering in history course help make you feel like you belong in engineering at WVU and that you are included in engineering at WVU?, 2) Do you feelmore »part of the group when working on projects in your engineering courses?, 3) Do you consider yourself a member of the scientific and engineering community here at WVU? Why or why not, and 4) Do you consider yourself a member of the broader scientific and engineering community? During the exploratory coding phase three codes were established to represent the degree of inclusion felt by students: Edge of Inclusion, Slight Inclusion, and Feelings of Inclusion. Edge of Inclusion was characterized by student responses such as “almost there but not totally”, “just starting to be”, and “no, well maybe a bit” while student responses such as “yes, but only a little” and “in some classes or situations” were recognized as Slight Inclusion. Examples of student responses such as “yes, I do feel part of it”, “absolutely, since I’ve…”, and “I would consider myself part of . . .” were classified with the code Feelings of Inclusion. Since the sample size was limited by scholarship funding, statistically significant results weren’t obtainable, but clear themes emerged that can be used to influence engineering curricula and serve as justification for an expanded study. Participating in an internship emerged as a major contributor to students feeling included in the broader scientific community. Interestingly, a decrease in the average degree of inclusion occurred after the students’ first semester, prior to increasing in later semesters. It is hypothesized that the emphasis on cohort formation, career exploration, and planned co-curricular activities during the first semester in the AcES program bolstered the initial feelings of inclusion. A student’s feeling of inclusion is known to be a contributing factor in retention. The findings of this research indicate that internships should not only be strongly encouraged, but university resources should be invested in helping students be prepared for, apply to, and obtain internships. The researchers suggest the study be expanded beyond the AcES program to examine a broader sample and greater number of students.« less
  5. Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad rangemore »of students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience.« less