Abstract Study on the regulation of broad‐spectrum resistance is an active area in plant biology.RESISTANCE TO POWDERY MILDEW 8.1(RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance inArabidopsisagainst powdery mildew. We isolated and characterizedArabidopsis b7‐6mutant. A point mutation inb7‐6at theAt5g12380locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing ofAtANN8led to enhanced expression ofRPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression ofAtANN8compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.
more »
« less
Golovinomyces cichoracearum effector‐associated nuclear‐localisation of RPW8 .2 amplifies its expression to boost immunity in Arabidopsis
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
more »
« less
- Award ID(s):
- 1901566
- PAR ID:
- 10388426
- Date Published:
- Journal Name:
- New Phytologist
- ISSN:
- 0028-646X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spray‐induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double‐stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole‐fungicide targetcytochrome P45051 (CYP51) in theGolovinomyces orontii–Arabidopsis thalianapathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation:apoptosis‐antagonizing transcription factorin essential cellular metabolism and stress response; lipid catabolism geneslipase a,lipase 1, andacetyl‐CoA oxidasein energy production;and genes involved in manipulation of the plant host via abscisic acid metabolism (9‐cis‐epoxycarotenoid dioxygenase,xanthoxin dehydrogenase, and a putativeabscisic acid G‐protein coupled receptor) and secretion of the effector protein,effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for theErysiphe necator–Vitis viniferasystem and tested six successful targets identified using theG. orontii–A. thalianasystem. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in theG. orontii–A. thalianapathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.more » « less
-
Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.more » « less
-
Summary Biotrophic pathogens are believed to strategically manipulate sugar transport in host cells to enhance their access to carbohydrates. However, mechanisms of sugar translocation from host cells to biotrophic fungi such as powdery mildew across the plant–haustorium interface remain poorly understood.To investigate this question, systematic subcellular localisation analysis was performed for all the 14 members of the monosaccharide sugar transporter protein (STP) family inArabidopsis thaliana. The best candidate AtSTP8 was further characterised for its transport properties inSaccharomyces cerevisiaeand potential role in powdery mildew infection by gene ablation and overexpression in Arabidopsis.Our results showed that AtSTP8 was mainly localised to the endoplasmic reticulum (ER) and appeared to be recruited to the host‐derived extrahaustorial membrane (EHM) induced by powdery mildew. Functional complementation assays inS. cerevisiaesuggested that AtSTP8 can transport a broad spectrum of hexose substrates. Moreover, transgenic Arabidopsis plants overexpressingAtSTP8showed increased hexose concentration in leaf tissues and enhanced susceptibility to powdery mildew.Our data suggested that the ER‐localised sugar transporter AtSTP8 may be recruited to the EHM where it may be involved in sugar acquisition by haustoria of powdery mildew from host cells in Arabidopsis.more » « less
-
Abstract In Arabidopsis thaliana, the POWDERY MILDEW RESISTANT4 (PMR4)/GLUCAN SYNTHASE LIKE5 (GSL5) callose synthase is required for pathogen-induced callose deposition in cell wall defense. Paradoxically, pmr4/gsl5 mutants exhibit strong resistance to both powdery and downy mildew. The powdery mildew resistance of pmr4/gsl5 has been attributed to upregulated salicylic acid (SA) signaling based on its dependance on PHYTOALEXIN DEFICIENT4 (PAD4), which controls SA accumulation, and its abolishment by bacterial NahG salicylate hydroxylase. Our study revealed that disruption of PMR4/GSL5 also leads to early senescence. Suppressor analysis uncovered that PAD4 and N-hydroxypipecolic acid (NHP) biosynthetic genes ABERRANT GROWTH AND DEATH2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLAVIN-DEPENDENT MONOXYGENASE1 (FMO1) are required for early senescence of pmr4/gsl5 mutants. The critical role of NHP in the early senescence of pmr4/gsl5 was supported by greatly increased accumulation of pipecolic acid in pmr4/gsl5 mutants. In contrast, disruption of the SA biosynthetic gene ISOCHORISMATE SYNTHASE1/SA-INDUCTION DIFFICIENT 2 (ICS1/SID2), which greatly reduces SA accumulation, had little effect on impaired growth of pmr4/gsl5. Furthermore, while disruption of PAD4 completely abolished the powdery mildew resistance in pmr4/gsl5, mutations in ICS1/SID2, ALD1, or FMO1 had only a minor effect on the resistance of the mutant plants. However, disruption of both ICS1/SID2 and FMO1 abolished the enhanced immunity of the callose synthase mutants against the fungal pathogen. Therefore, while NHP plays a crucial role in the early senescence of pmr4/gsl5 mutants, both SA and NHP have important roles in the strong powdery mildew resistance induced by the loss of the callose synthase.more » « less
An official website of the United States government

