skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AtSTP8, an endoplasmic reticulum‐localised monosaccharide transporter from Arabidopsis, is recruited to the extrahaustorial membrane during powdery mildew infection
Summary Biotrophic pathogens are believed to strategically manipulate sugar transport in host cells to enhance their access to carbohydrates. However, mechanisms of sugar translocation from host cells to biotrophic fungi such as powdery mildew across the plant–haustorium interface remain poorly understood.To investigate this question, systematic subcellular localisation analysis was performed for all the 14 members of the monosaccharide sugar transporter protein (STP) family inArabidopsis thaliana. The best candidate AtSTP8 was further characterised for its transport properties inSaccharomyces cerevisiaeand potential role in powdery mildew infection by gene ablation and overexpression in Arabidopsis.Our results showed that AtSTP8 was mainly localised to the endoplasmic reticulum (ER) and appeared to be recruited to the host‐derived extrahaustorial membrane (EHM) induced by powdery mildew. Functional complementation assays inS. cerevisiaesuggested that AtSTP8 can transport a broad spectrum of hexose substrates. Moreover, transgenic Arabidopsis plants overexpressingAtSTP8showed increased hexose concentration in leaf tissues and enhanced susceptibility to powdery mildew.Our data suggested that the ER‐localised sugar transporter AtSTP8 may be recruited to the EHM where it may be involved in sugar acquisition by haustoria of powdery mildew from host cells in Arabidopsis.  more » « less
Award ID(s):
1901566
PAR ID:
10450773
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
230
Issue:
6
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2404-2419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Calcium‐dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine.Here, we report thatVpCDPK9andVpCDPK13, two paralogousCDPKsfromVitis pseudoreticulataaccession Baihe‐35‐1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of ‘Baihe‐35‐1’ were differentially induced upon powdery mildew infection. Overexpression ofVpCDPK9‐YFPorVpCDPK13‐YFPin theV. viniferasusceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2O2and callose in penetrated epidermal cells and/or the mesophyll cells underneath.Ectopic expression ofVpCDPK9‐YFPin Arabidopsis resulted in varied degrees of reduced stature, pre‐mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished inVpCDPK9‐YFPtransgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2in vivo(ACS, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase; MAPK, mitogen‐activated protein kinase).These results suggest thatVpCDPK9andVpCDPK13contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine. 
    more » « less
  2. Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants. 
    more » « less
  3. Abstract Spray‐induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double‐stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole‐fungicide targetcytochrome P45051 (CYP51) in theGolovinomyces orontii–Arabidopsis thalianapathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation:apoptosis‐antagonizing transcription factorin essential cellular metabolism and stress response; lipid catabolism geneslipase a,lipase 1, andacetyl‐CoA oxidasein energy production;and genes involved in manipulation of the plant host via abscisic acid metabolism (9‐cis‐epoxycarotenoid dioxygenase,xanthoxin dehydrogenase, and a putativeabscisic acid G‐protein coupled receptor) and secretion of the effector protein,effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for theErysiphe necator–Vitis viniferasystem and tested six successful targets identified using theG. orontii–A. thalianasystem. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in theG. orontii–A. thalianapathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control. 
    more » « less
  4. Summary Powdery mildew is an economically important disease caused byc. 1000 different fungal species.Erysiphe vacciniiis an emerging powdery mildew species that is impacting the blueberry industry. Once confined to North America,E. vacciniiis now spreading rapidly across major blueberry‐growing regions, including China, Morocco, Mexico, and the USA, threatening millions in losses.This study documents its recent global spread by analyzing both herbarium specimens, some over 150‐yr‐old, and fresh samples collected world‐wide.Our findings were integrated into a ‘living phylogeny’ via T‐BAS to simplify pathogen identification and enable rapid responses to new outbreaks. We identified 50 haplotypes, two primary introductions world‐wide, and revealed a shift from a generalist to a specialist pathogen.This research provides insights into the complexities of host specialization and highlights the need to address this emerging global threat to blueberry production. 
    more » « less
  5. Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity. 
    more » « less