skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cascading Hazards in a Migrating Forearc‐Arc System: Earthquake and Eruption Triggering in Nicaragua
Abstract Strain partitioning in oblique convergent margins results in margin‐parallel shear in the overriding plate. Margin‐parallel shear is often accommodated by margin‐parallel strike‐slip faults proximal to active volcanic arcs. Along the Nicaraguan segment of the Central American Forearc (CAFA) in the Cocos‐Caribbean plate convergent margin, there are no well‐expressed right‐lateral faults that accommodate CA‐CAFA relative motion. Instead, historical earthquakes and mapped fault orientations indicate that the ∼12 mm/yr of dextral motion is accommodated on arc‐normal, left‐lateral faults (i.e., bookshelf faults). We investigate three upper‐plate earthquakes; the 10 April 2014 (Mw6.1), 15 September 2016 (Mw5.7), and 28 September 2016 (Mw5.5), using Global Position System co‐seismic displacements and relocated earthquake aftershocks. Our analyses of the three earthquakes indicate that the 10 April 2014 earthquake ruptured an unmapped margin‐parallel right‐lateral fault in Lago Xolotlán (Managua) and the September 2016 earthquakes ruptured arc‐normal, left‐lateral and oblique‐slip faults. These earthquakes represent a triggered sequence whereby the 10 April 2014 earthquake promoted failure of the faults that ruptured in September 2016 by imparting a static Coulomb stress change (ΔCFS) of 0.02–0.07 MPa. Likewise, the 15 September 2016, earthquake additionally promoted failure (ΔCFS of 0.08–0.1 MPa) on sub‐parallel faults that ruptured in two subsequent earthquakes. We also present an instance of magma‐tectonic interaction whereby the 10 April 2014 earthquake dilated (10s of μStrain) the shallow magmatic system of Momotombo Volcano, which led to magma injection, ascent, and eruption on 1 December 2015, after ∼100 years of quiescence.  more » « less
Award ID(s):
1826508 1822485
PAR ID:
10388460
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
12
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Trench‐parallel translation of the Central American Forearc (CAFA) is the result of strain partitioning along the Cocos and Caribbean (CA) convergent margin. Unlike the tectonics of northwestern Costa Rica and El Salvador, CAFA‐CA relative motion in Nicaragua is not accommodated on margin‐parallel fault systems. Rather, the northwest‐trending dextral shear is accommodated on margin‐normal sinistral strike‐slip faults that approximate the motion of a margin‐parallel fault (i.e., bookshelf faulting). We compare a new Global Positioning System interseismic horizontal velocity field to analytical and numerical models to show that the bookshelf faulting model can produce the observed velocity field and provide insight into the kinematics and configuration of the margin‐normal fault system. We find that a fault system with 20 km‐long parallel to sub‐parallel margin‐normal sinistral faults, spaced ∼5 km apart, locked from the surface to 5 km depth, and with interseismic slip deficits of 4 mm yr−1, can replicate the observed velocity field. These findings have implications for the region's seismic hazard where shallow moderate‐magnitude earthquakes will have reoccurrence intervals of ∼50 years. These findings are also important for volcanic hazard estimation and unrest forecasting because the margin‐normal faults are in the volcanic arc and magma‐tectonic interactions have been documented along the CAFA. 
    more » « less
  2. Abstract The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake. 
    more » « less
  3. Abstract Seismicity in the Eagle Ford play grew to 33 times the background rate in 2018. We identified how hydraulic fracturing (HF) contributed to seismicity since 2014 by comparing times and locations of HF with a catalog of seismicity extended with template matching. We found 94 ML≥ 2.0 earthquakes spatiotemporally correlated to 211 HF well laterals. Injected volume and number of laterals on a pad influence the probability of seismicity, but effective injection rate has the strongest effect. Simultaneous stimulation of multiple laterals tripled the probability of seismicity relative to a single, isolated lateral. The 1 May 2018 MW4.0 earthquake may have been the largest HF‐induced earthquake in the United States. It occurred ~10 km from a MW4.8 earthquake in 2011 and was thought to be induced by fluid extraction. Thus, faults in this area are capable of producing felt and potentially damaging earthquakes due to operational activities. 
    more » « less
  4. Abstract The plate-boundary conditions of the Mesozoic North American Cordillera remain poorly constrained, but most studies support large (>800 km) southward motion of the Insular and Intermontane superterranes during Jurassic–Cretaceous time. An implicit feature in these models of large coastwise displacements is the presence of one or more continentalscale sinistral strike-slip faults that could have dismembered and displaced terrane fragments southward along the western margin of North America prior to the onset of mid-Cretaceous shortening and dextral strike-slip faulting. In this study, we documented a system of sinistral intra-arc shear zones within the Insular superterrane that may have accommodated large southward motion. Employment of a new large-n igneous zircon U-Pb method more than doubled the precision of measurements obtained by laser ablation–inductively coupled plasma–mass spectrometry (from ~1% to 0.5%) and allowed us to demonstrate the close temporal-spatial relationship between magmatism and deformation by dating comagmatic crosscutting phases. Crystallization ages of pre-, syn-, and postkinematic intrusions show that the intra-arc shear zones record an Early Cretaceous phase of sinistral oblique convergence that terminated between 107 and 101 Ma. Shear zone cessation coincided with: (1) collapse of the Gravina basin, (2) development of a single voluminous arc that stitched the Insular and Intermontane superterranes together, and (3) initiation of eastwest contractional deformation throughout the Coast Mountains. We interpret these concurrent tectono-magmatic events to mark a shift in plate kinematics from a sinistral-oblique system involving separate terranes and intervening ocean basins to a strongly convergent two-plate margin involving a single oceanic plate and the newly assembled western margin of North America. 
    more » « less
  5. Abstract Major earthquakes in oceanic lithosphere seaward of the subduction zone outer trench slope are relatively uncommon, but several recent occurrences have involved very complex sequences rupturing multiple nonaligned faults and/or having high aftershock productivity with diffuse distribution. This includes the 21 December 2010MW7.4 Ogasawara (Bonin), 11 April 2012MW8.6 Indo‐Australia, 23 January 2018MW7.9 Off‐Kodiak Island, and 20 December 2018MW7.3 Nikol'skoye (northwest Pacific) earthquakes. Major oceanic intraplate event sequences farther from plate boundaries do not tend to be as complex in faulting or aftershocks. Outer trench slope extensional faulting can involve complex distributed sequences, particularly when activated by great megathrust ruptures such as 11 March 2011MW9.1 Tohoku and 15 November 2006MW8.3 Kuril Islands. Intense faulting sequences also occur near subduction zone corners, with many fault geometries being activated, including some in nearby oceanic lithosphere, as for the 29 September 2009MW8.1 Samoa, 6 February 2013MW8.0 Santa Cruz Islands, and 16 November 2000MW8.0 New Ireland earthquakes. The laterally varying plate boundary stresses from heterogeneous locking, recent earthquakes, or boundary geometry influence the specific faulting geometries activated in nearby major intraplate ruptures in oceanic lithosphere. Preexisting lithospheric structures and fabrics exert secondary influences on the faulting. Intraplate stress release in oceanic lithosphere near subduction zones favors distributed macrofracturing of near‐critical fault systems rather than localized, single‐fault failures, both under transient loading induced by plate boundary ruptures and under slow loading by tectonic motions and slab pull. 
    more » « less