skip to main content


Title: Interactive effects of nutrients and temperature on herbivorous predation in a coastal plankton community
Abstract

Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource‐dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d−1, with higher rates at subzero temperatures. Overall, the nutrient–temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high‐temperature and nutrient conditions, while high‐temperature and low‐nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production.

 
more » « less
Award ID(s):
1638804 1655221 1736635
NSF-PAR ID:
10388555
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
68
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herbivorous consumption of primary production is a key transformation in global biogeochemical cycles, directing matter and energy either to higher trophic levels, export production, or remineralization. Grazing by microzooplankton is often poorly constrained, particularly in dynamic coastal systems. Temperate coastal areas are seasonally and spatially variable, which presents both challenges and opportunities to identify patterns and drivers of grazing pressure. Here we report on two winter and one summer week‐long cruises (2018–2019), as part of the new Northeast U.S. Shelf Long‐Term Ecological Research program. During both seasons, coastal waters were colder and fresher, and had higher phytoplankton biomass than waters at the shelf break. The phytoplankton community was dominated by large cells in winter and by small cells in summer. Phytoplankton growth rates ranged from < 0.5 d−1in winter and up to 1.4 d−1in summer and were strongly correlated to temperature, to light availability, and to phytoplankton community size‐structure. Grazing rates were not correlated with total chlorophyll a, which points to other biological drivers, including species composition in predator‐prey interactions at the first trophic level. The percentage of primary production consumed (%PP) indicated higher trophic transfer in winter (%PP > 50%) than during summer (%PP < 20%), highlighting seasonal shifts in planktonic food web structure and function. These results imply that predictable shifts in environmental conditions can be linked to ecosystem shifts in net primary production. Hierarchies of variability, from localized to interannual and long‐term climate driven, can be understood within the context of sustained measurements of ecosystem properties and function.

     
    more » « less
  2. Abstract

    A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux.

     
    more » « less
  3. Summary

    Food chain efficiency (FCE), the proportion of primary production converted to production of the top trophic level, can influence several ecosystem services as well as the biodiversity and productivity of each trophic level. AquaticFCEis affected by light and nutrient supply, largely via effects on primary producer stoichiometry that propagate to herbivores and then carnivores. Here, we test the hypothesis that the identity of the top carnivore mediatesFCEresponses to changes in light and nutrient supply.

    We conducted a large‐scale, 6‐week mesocosm experiment in which we manipulated light and nutrient (nitrogen and phosphorus) supply and the identity of the carnivore in a 2 × 2 × 2 factorial design. We quantified the response ofFCEand the biomass and productivity of each trophic level (phytoplankton, zooplankton, and carnivore). We used an invertebrate,Chaoborus americanus, and a vertebrate, bluegill sunfish (Lepomis macrochirus), as the two carnivores in this study because of the large difference in phosphorus requirements between these taxa.

    We predicted that bluegill would be more likely to experience P‐limitation due to higher P requirements, and hence thatFCEwould be lower in the bluegill treatments than in theChaoborustreatments. We also expected the interactive effect of light and nutrients to be stronger in the bluegill treatments. Within a carnivore treatment, we predicted highestFCEunder low light and high nutrient supply, as these conditions would produce high‐quality (low C:nutrient) algal resources. In contrast, if food quantity had a stronger effect on carnivore production than food quality, carnivore production would increase proportionally with primary production, thusFCEwould be similar across light and nutrient treatments.

    Carnivore identity mediated the effects of light and nutrients onFCE, and as predictedFCEwas higher in food chains withChaoborusthan with bluegill. Also as predicted,FCEinChaoborustreatments was higher under low light. However,FCEin bluegill treatments was higher at high light supply, opposite to our predictions. In addition, bluegill production increased proportionally with primary production, whileChaoborusproduction was not correlated with primary production, suggesting that bluegill responded more strongly to food quantity than to food quality. These carnivore taxa differ in traits other than body stoichiometry, for example, feeding selectivity, which may have contributed to the observed differences inFCEbetween carnivores.

    Comparison of our results with those from previous experiments showed thatFCEresponds similarly to light and nutrients in food chains withChaoborusand larval fish (gizzard shad: Clupeidae), but very differently in food chains with bluegill. These findings warrant further investigation into the mechanisms related to carnivore identity (e.g., developmental stage, feeding selectivity) underlying these responses, and highlight the importance of considering both top‐down and bottom‐up effects when evaluating food chain responses to changing light and nutrient conditions.

     
    more » « less
  4. Abstract

    Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0–75 mg L−1), temperature (19–27°C), and pH (6.3–7.3) on the growth rate of the algal speciesScenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high‐risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust‐induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.

     
    more » « less
  5. null (Ed.)
    Abstract We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish. 
    more » « less