skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1638804

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource‐dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d−1, with higher rates at subzero temperatures. Overall, the nutrient–temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high‐temperature and nutrient conditions, while high‐temperature and low‐nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production.

    more » « less
  2. Abstract

    A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux.

    more » « less
  3. Abstract

    Diatoms have well‐recognized roles in fixing and exporting carbon and supplying energy to marine ecosystems, but only recently have we begun to explore the diversity and importance of nano‐ and pico‐diatoms. Here, we describe a small (ca. 5 μm) diatom from the genusChaetocerosisolated from a wintertime temperate estuary (2°C, Narragansett Bay, Rhode Island), with a unique obligate specialization for low‐light environments (< 120 μmol photons m−2 s−1). This diatom exhibits a striking interaction between irradiance and thermal responses whereby as temperatures increase, so does its susceptibility to light stress. Historical 18S rRNA amplicon data from our study site show this isolate was abundant throughout a 6‐yr period, and its presence strongly correlates with winter and early spring months when light and temperature are low. Two amplicon sequence variants matching this isolate had a circumpolar distribution in Tara Polar Ocean Circle samples, indicating its unusual light and temperature requirements are adaptations to life in a cold, dark environment. We expect this isolate's low light, psychrophilic niche to shrink as future warming‐induced stratification increases both light and temperature levels experienced by high latitude marine phytoplankton.

    more » « less
  4. Abstract

    Average sea surface temperatures are expected to rise 4° this century, and marine phytoplankton and bacterial community composition, biogeochemical rates, and trophic interactions are all expected to change in a future warmer ocean. Thermal experiments typically use constant temperatures; however, weather and hydrography cause marine temperatures to fluctuate on diel cycles and over multiple days. We incubated natural communities of phytoplankton collected from California coastal waters during spring, summer, and fall under present-day and future mean temperatures, using thermal treatments that were either constant or fluctuated on a 48 h cycle. As assayed by marker-gene sequencing, the emergent microbial communities were consistent within each season, except when culture temperatures exceeded the highest temperature recorded in a 10-year local thermal dataset. When temperature treatments exceeded the 10-year maximum the phytoplankton community shifted, becoming dominated by diatom amplicon sequence variants (ASVs) not seen at lower temperatures. When mean temperatures were above the 10-year maximum, constant and fluctuating regimes each selected for different ASVs. These findings suggest coastal microbial communities are largely adapted to the current range of temperatures they experience. They also suggest a general hypothesis whereby multiyear upper temperature limits may represent thresholds, beyond which large community restructurings may occur. Now inevitable future temperature increases that exceed these environmental thresholds, even temporarily, may fundamentally reshape marine microbial communities and therefore the biogeochemical cycles that they mediate.

    more » « less
  5. Abstract

    Increased stratification and mixed layer shoaling of the surface ocean resulting from warming can lead to exposure of marine dinitrogen (N2)‐fixing cyanobacteria to higher levels of inhibitory ultraviolet (UV) radiation. These same processes also reduce vertically advected supplies of the potentially limiting nutrient phosphorus (P) to N2fixers. It is currently unknown how UV inhibition and P limitation interact to affect the biogeochemical cycles of nitrogen and carbon in these biogeochemically critical microbes. We investigated the responses of the important and widespread marine N2‐fixing cyanobacteriaCrocosphaera(strain WH0005) andTrichodesmium(strains IMS 101 and GBR) to UV‐A and UV‐B under P‐replete and P‐limited conditions. Growth, N2fixation, and carbon dioxide (CO2) fixation rates ofTrichodesmiumIMS 101 andCrocosphaerawere negatively affected by UV exposure. This inhibition was greater forTrichodesmiumIMS 101 than forCrocosphaera, which fixes N2only during the night and so avoids direct UV damage. Negative effects of UV on both IMS 101 andCrocosphaerawere less in P‐limited cultures than in P‐replete cultures. In contrast, no UV inhibition was observed in GBR, regardless of P availability. UV inhibition was related to different amounts of UV‐absorbing compounds produced by these isolates. Responses to UV radiation and P availability interactions were taxon‐specific, but our results indicated that in general, UV radiation effects onTrichodesmiumandCrocosphaerarange from negative to neutral. UV inhibition and its interactions with P limitation may thus have a substantial influence on the present day and future nitrogen and carbon cycles of the ocean.

    more » « less
  6. Stewart, Frank J. (Ed.)
    ABSTRACT Cluster 5 Synechococcus species are widely acknowledged for their broad distribution and biogeochemical importance. In particular, subcluster 5.2 strains inhabit freshwater, estuarine, and marine environments but are understudied, compared to other subclusters. Here, we present the genome for Synechococcus sp. strain LA31, a strain that was recently isolated from Narragansett Bay, Rhode Island, USA. 
    more » « less
  7. York, A (Ed.)