This paper formulates the cache-aided multi-user Private Information Retrieval (MuPIR) problem, including K u cache-equipped users, each of which wishes to retrieve a desired message efficiently from N distributed databases with access to K independent messages. Privacy of the users’ demands requires that any individual database can not learn anything about the demands of the users. The load of this problem is defined as the average number of downloaded bits per desired message bit. The goal is to find the optimal memory-load trade-off while preserving the demand privacy. Besides the formulation of the MuPIR problem, the contribution of this paper is two-fold. First, we characterize the optimal memory-load trade-off for a system with N = 2 databases, K = 2 messages and K u = 2 users demanding distinct messages; Second, a product design with order optimality guarantee is proposed. In addition, the product design can achieve the optimal load when the cache memory is large enough. The product design embeds the well-known Sun-Jafar PIR scheme into coded caching, in order to benefit from the coded caching gain while preserving the privacy of the users’ demands.
more »
« less
Coded Caching With Private Demands and Caches
In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with private demands and caches. Only one existing private caching scheme, which is based on introducing virtual users, can preserve the privacy of demands and caches simultaneously, but at the cost of an extremely large subpacketization exponential in the product of the number of users (K) and files (N) in the system. In order to reduce the subpacketization while satisfying the privacy constraints, we propose a novel approach which constructs private coded caching schemes through private information retrieval (PIR). Based on this approach, we propose novel schemes with private demands and caches which have a subpacketization level in the order exponential with K instead of NK in the virtual user scheme. As a by-product, for the coded caching problem with private demands, a private coded caching scheme could be obtained from the proposed approach, which generally improves the memory-load tradeoff of the private coded caching scheme by Yan and Tuninetti.
more »
« less
- NSF-PAR ID:
- 10388591
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 1396 to 1401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In order to preserve the privacy of the users demands from other users, in this paper we formulate a novel information theoretic Device-to-Device (D2D) private caching model by adding a trusted server. In the delivery phase, the trusted server collects the users demands and sends a query to each user, who then broadcasts packets according to this query. Two D2D private caching schemes (uncoded and coded) are proposed in this paper, which are shown to be order optimal.more » « less
-
This paper considers cache-aided device-to-device (D2D) networks where a trusted server helps to preserve the privacy of the users’ demands. Specifically, the trusted server collects the users’ demands before the delivery phase and sends a query to each user, who then broadcasts multicast packets according to this query. Recently the Authors proposed a D2D private caching scheme that was shown to be order optimal except for the very low memory size regime, where the optimality was proved by comparing to a converse bound without privacy constraint. The main contribution of this paper is a novel converse bound for the studied model where users may collude (i.e., some users share cache contents and demanded files, and yet cannot infer what files the remaining users have demanded) and under the placement phase is uncoded. To the best of the Author’s knowledge, such a general bound is the first that genuinely accounts for the demand privacy constraint. The novel converse bound not only allows to show that the known achievable scheme is order optimal in all cache size regimes (while the existing converse bounds cannot show it), but also has the potential to be used in other variants of demand private caching.more » « less
-
Coded multicasting has been shown to be a promising approach to significantly improve the performance of content delivery networks with multiple caches downstream of a common multicast link. However, the schemes that have been shown to achieve order-optimal performance require content items to be partitioned into several packets that grows exponentially with the number of caches, leading to codes of exponential complexity that jeopardize their promising performance benefits. In this paper, we address this crucial performance-complexity tradeoff in a heterogeneous caching network setting, where edge caches with possibly different storage capacity collect multiple content requests that may follow distinct demand distributions. We extend the asymptotic (in the number of packets per file) analysis of shared link caching networks to heterogeneous network settings, and present novel coded multicast schemes, based on local graph coloring, that exhibit polynomial-time complexity in all the system parameters, while preserving the asymptotically proven multiplicative caching gain even for finite file packetization. We further demonstrate that the packetization order (the number of packets each file is split into) can be traded-off with the number of requests collected by each cache, while preserving the same multiplicative caching gain. Simulation results confirm the superiority of the proposed schemes and illustrate the interesting request aggregation vs. packetization order tradeoff within several practical settings. Our results provide a compelling step towards the practical achievability of the promising multiplicative caching gain in next generation access networks.more » « less
-
In the problem of cache-aided Multiuser Private Information Retrieval (MuPIR), a set of Ku cache-aided users wish to download their desired messages from a set of N distributed non-colluding databases each holding a library of K independent messages. The communication load of this problem is defined as the total number of bits downloaded (normalized by the message length) by the users. The goal is to find the optimal memory-load trade-off under the constraint of user demand privacy, which ensures that any individual database learns nothing about the demands of the users. In this paper, for the MuPIR problem with K = 2 messages, K u = 2 users and N ≥ 2 databases, we provide achievability for the memory-load pairs (N-1/2N, N+1/N) and(2(N-1)/2N-1,N+1/2N-1) by constructing specific achievable schemes based on the novel idea of Private Cacheaided Interference Alignment (PCIA). We prove that the proposed scheme is optimal if the cache placement is uncoded (i.e., users directly cache a subset of the library bits). Computer-aided investigation also shows that the proposed schemes are optimal in general when N = 2, 3.more » « less