skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gamifying Decision Support Systems to Promote Inclusive and Engaged Urban Resilience Planning
Urban residents are often unevenly vulnerable to extreme weather and climate events due to socio-economic factors and insufficient greenspace. This can be amplified if citizens are not meaningfully consulted in the planning and design decisions, with changes to greenspace having detrimental impacts on local communities, e.g., through green gentrification. These deficiencies can be addressed through inclusive landscape-level collaborative planning and design processes, where residents are fully engaged in the co-creation of urban greenspaces. A promising way to support co-creation efforts is gamifying technology-based interactive decision support systems (DSSs). Gamification, the incorporation of video game elements or play into non-game contexts, has previously been used for DSSs in urban planning and to inform the public about the impacts of climate change. However, this has yet to combine informational goals with design-play functionality in the redesign of urban greenspaces. We conducted a review of state-of-the-art video game DSSs used for urban planning engagement and climate education. Here, we propose that gamified DSSs should incorporate educational elements about climate change alongside the interactive and engaging elements of urban planning games, particularly for real-world scenarios. This cross-disciplinary approach can facilitate improved community engagement in greenspace planning, informing design and management strategies to ensure multiple benefits for people and the environment in climate-vulnerable cities.  more » « less
Award ID(s):
2033320
PAR ID:
10388611
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Urban Planning
Volume:
7
Issue:
2
ISSN:
2183-7635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenspaces in communities are critical for mitigating effects of climate change and have important impacts on health. Today, the availability of satellite imagery data combined with deep learning methods allows for automated greenspace analysis at high resolution. We propose a novel green color augmentation for deep learning model training to better detect and delineate types of greenspace (trees, grass) with satellite imagery. Our method outperforms gold standard methods, which use vegetation indices, by 33.1% (accuracy) and 77.7% (intersection-over-union; IoU). The proposed augmentation technique also shows improvement over state-of-the-art deep learning-based methods by 13.4% (IoU) and 3.11% (accuracy) for greenspace segmentation. We apply the method to high-resolution (0.27m/pixel) satellite images covering Karachi, Pakistan and illuminates an important need; Karachi has 4.17m2of greenspace per capita, which significantly lags World Health Organization recommendations. Moreover, greenspaces in Karachi are often in areas of economic development (Pearson’s correlation coefficient shows a 0.352 correlation between greenspaces and roads,p< 0.001), and corresponds to higher land surface temperature in localized areas. Our greenspace analysis and how it relates to infrastructure and climate is relevant to urban planners, public health and government professionals, and ultimately the public, for improved allocation and development of greenspaces. 
    more » « less
  2. Greenspace positively impacts mental health. Previous research has focused on the greenspace-mental health relationship in urban areas. Yet, little work has looked at rural areas despite rural communities reporting similar rates of poor mental health outcomes and higher rates of suicide mortality compared with urban areas. This ecological research study examined the following research questions: (1) Do public and/or private greenspaces affect the spatial distribution of mental health outcomes in North Carolina? (2) Does this relationship change with rurality? Emergency department data for 6 mental health conditions and suicide mortality data from 2009 to 2018 were included in this analysis. Spatial error and ordinary least squares regressions were used to examine the influence of public and private greenspace quantity on mental health in rural and urban communities. Results suggest greenspace benefits mental health in rural and urban communities. The strength of this relationship varies with urbanity and between public and private greenspaces, suggesting a more complex causal relationship. Given the high case counts and often lower density of mental health care facilities in rural areas, focusing attention on low-cost mental health interventions, such as greenspace, is important when considering rural mental health care. 
    more » « less
  3. It is increasingly acknowledged that urban and landscape planning processes need to incorporate stakeholder input and feedback. To this end, decision-makers have been implementing a range of decision support systems (DSSs), such as using geographic information systems (GIS) or 3D renderings of designs to help better explain the advantages and disadvantages of proposed designs. In addition, urban and landscape planning DSSs have also incorporated gamification (the use of game features and mechanics in non-game environments) to provide interactivity whilst providing an engaging experience. In these contexts, using 3D renderings of real-world environments can be a powerful tool for aiding in the democratisation of planning decisions. However, the creation of large-scale 3D models representing real cities or landscapes is limited by time-intensive manual methods. This is compounded by the fact that under our current rapidly changing environment, landscapes and urban areas are likely to alter in appearance within short periods of time. It is therefore imperative that 3D renderings of real-world environments can adapt to these changes. Here, we propose methods of using GIS datasets to automatically generate in-game worlds reflective of the real-world and how these 3D models can be used to engage citizens in planning decisions. 
    more » « less
  4. Abstract The impact of climate extremes upon human settlements is expected to accelerate. There are distinct global trends for a continued rise in urban dwellers and associated infrastructure. This growth is occurring amidst the increasing risk of extreme heat, rainfall, and flooding. Therefore, it is critical that the urban development and architectural communities recognize climate impacts are expected to be experienced globally, but the cities and urban regions they help create are far more vulnerable to these extremes than nonurban regions. Designing resilient human settlements responding to climate change needs an integrated framework. The critical elements at play are climate extremes, economic growth, human mobility, and livability. Heightened public awareness of extreme weather crises and demands for a more moral climate landscape has promoted the discussion of urban climate change ethics. With the growing urgency for considering environmental justice, we need to consider a transparent, data-driven geospatial design approach that strives to balance environmental justice, climate, and economic development needs. Communities can greatly manage their vulnerabilities under climate extremes and enhance their resilience through appropriate design and planning towards long-term stability. A holistic picture of urban climate science is thus needed to be adopted by urban designers and planners as a principle to guide urban development strategy and environmental regulation in the context of a growingly interdependent world. 
    more » « less
  5. 1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning. 
    more » « less