skip to main content


Title: The Magnetic Field in the Milky Way Filamentary Bone G47
Abstract Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼10 4 cm −3 ) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as “bones.” Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μ m and 18.″2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μ G. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse.  more » « less
Award ID(s):
2108938 1816715 1815784 2108989 2009842 1910364
NSF-PAR ID:
10343966
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
926
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. 
    more » « less
  2. Abstract

    We present Stratospheric Observatory For Infrared Astronomy (SOFIA) + Atacama Large Millimeter/submillimeter Array (ALMA) continuum and spectral-line polarization data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μm HAWC+ polarization map finds a highly organized magnetic field in the densest, inner 0.55 × 0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud’s outer layers. The 3 mm continuum ALMA polarization data reveal several more structures in the inner domain, including a parsec-long, ∼500M“Streamer” around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east–west Streamer but oriented north–south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholdsNcrit= 6.6 × 1026m−2,ncrit= 2.5 × 1011m−3, andBcrit= 42 ± 7 nT. ALMA also mapped Goldreich–Kylafis polarization in12CO across the cloud, which traces, in both total intensity and polarized flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350 ± 50Mfor the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free-fall toward a 950 ± 35Mobject. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for ∼33% of MIR 2's total luminosity via gravitational energy release.

     
    more » « less
  3. null (Ed.)
    Context. Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (≳50 pc) and massive (≳10 5 M ⊙ ) filaments, know as giant molecular filaments (GMFs), may be linked to Galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. Yet our physical understanding of GMFs is still poor. Aims. We investigate the dense gas properties of one GMF, with the ultimate goal of connecting these dense gas tracers with star formation processes in the GMF. Methods. We imaged one entire GMF located at l ~ 52–54° longitude, GMF54 (~68 pc long), in the empirical dense gas tracers using the HCN(1–0), HNC(1–0), and HCO + (1–0) lines, and their 13 C isotopologue transitions, as well as the N 2 H + (1–0) line. We studied the dense gas distribution, the column density probability density functions (N-PDFs), and the line ratios within the GMF. Results. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to 13 CO(1–0). We constructed the N-PDFs of H 2 for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log–log representation, and the HCO + N-PDF has the flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star-forming and photon-dominated regions have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N 2 H + / 13 CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except Ultraluminous Infrared Galaxies. Conclusions. As the largest coherent cold gaseous structure in our Milky Way, GMFs, are outstanding candidates for connecting studies of star formation on Galactic and extragalactic scales. By analyzing a complete map of the dense gas in a GMF we have found that: (1) the dense gas N-PDFs appear flatter in more evolved regions and steeper in younger regions, and (2) its integrated dense gas intensity ratios are similar to those of nearby galaxies. 
    more » « less
  4. ABSTRACT

    Many studies concluded that magnetic fields suppress star formation in molecular clouds and Milky Way like galaxies. However, most of these studies are based on fully developed fields that have reached the saturation level, with little work on investigating how an initial weak primordial field affects star formation in low metallicity environments. In this paper, we investigate the impact of a weak initial field on low metallicity dwarf galaxies. We perform high-resolution arepo simulations of five isolated dwarf galaxies. Two models are hydrodynamical, two start with a primordial magnetic field of 10$^{-6} \, \mu$G and different sub-solar metallicities, and one starts with a saturated field of 10$^{-2} \, \mu$G. All models include a non-equilibrium, time-dependent chemical network that includes the effects of gas shielding from the ambient ultraviolet field. Sink particles form directly from the gravitational collapse of gas and are treated as star-forming clumps that can accrete gas. We vary the ambient uniform far ultraviolet field, and cosmic ray ionization rate between 1 per cent and 10 per cent of solar values. We find that the magnetic field has little impact on the global star formation rate (SFR), which is in tension with some previously published results. We further find that the initial field strength has little impact on the global SFR. We show that an increase in the mass fractions of both molecular hydrogen and cold gas, along with changes in the perpendicular gas velocity dispersion and the magnetic field acting in the weak-field model, overcome the expected suppression in star formation.

     
    more » « less
  5. ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud. 
    more » « less