skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two Time-Scale Learning for Beamforming and Phase Shift Design in RIS-aided Networks
In this work, we develop a two time-scale deep learning approach for beamforming and phase shift (BF-PS) design in time-varying RIS-aided networks. In contrast to most existing works that assume perfect CSI for BF-PS design, we take into account the cost of channel estimation and utilize Long Short-Term Memory (LSTM) networks to design BF-PS from limited samples of estimated channel CSI. An LSTM channel extrapolator is designed first to generate high resolution estimates of the cascaded BS-RIS-user channel from sampled signals acquired at a slow time scale. Subsequently, the outputs of the channel extrapolator are fed into an LSTM-based two stage neural network for the joint design of BF-PS at a fast time scale of per coherence time. To address the critical issue that training overhead increases linearly with the number of RIS elements, we consider various pilot structures and sampling patterns in time and space to evaluate the efficiency and sum-rate performance of the proposed two time-scale design. Our results show that the proposed two time-scale design can achieve good spectral efficiency when taking into account the pilot overhead required for training. The proposed design also outperforms a direct BF-PS design that does not employ a channel extrapolator. These demonstrate the feasibility of applying RIS in time-varying channels with reasonable pilot overhead.  more » « less
Award ID(s):
1824558
PAR ID:
10388696
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICC 2022 - IEEE International Conference on Communications
Page Range / eLocation ID:
2627 to 2632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To reap the benefits of reconfigurable intelligent surfaces (RIS), channel state information (CSI) is generally required. However, CSI acquisition in RIS systems is challenging and often results in very large pilot overhead, especially in unstructured channel environments. Consequently, the RIS channel estimation problem has attracted a lot of interest and also been a subject of intense study in recent years. In this paper, we propose a decision-directed RIS channel estimation framework for general unstructured channel models. The employed RIS contains some hybrid elements that can simultaneously reflect and sense the incoming signal. We show that with the help of the hybrid RIS elements, it is possible to accurately recover the CSI with a pilot overhead proportional to the number of users. Therefore, the proposed framework substantially improves the system spectral efficiency compared to systems with passive RIS arrays since the pilot overhead in passive RIS systems is proportional to the number of RIS elements times the number of users. We also perform a detailed spectral efficiency analysis for both the pilot-directed and decision-directed frameworks. Our analysis takes into account both the channel estimation and data detection errors at both the RIS and the BS. Finally, we present numerous simulation results to verify the accuracy of the analysis as well as to show the benefits of the proposed decision-directed framework. 
    more » « less
  2. Future wireless networks could benefit from the energy-efficient, low-latency, and scalable deployments that Reconfigurable Intelligent Surfaces (RISs) offer. However, the creation of an effective low overhead channel estimate technique is a major obstacle in RIS-assisted systems, especially given the high number of RIS components and intrinsic hardware constraints. This research examines the uplink of a RIS-empowered multi-user MIMO communication system and presents a novel semi-blind channel estimate approach. Unlike current approaches, which rely on pilot-based channel estimation, our methodology uses data to estimate channels, considerably enhancing the achievable rate. We provide a closed-form deterministic expression for the uplink achievable rate in actual settings where the channel state information (CSI) must be estimated rather than assumed perfect. The results of the simulations show that the formula obtained is accurate, with a close alignment between the deterministic and actual achievable rates (generally between 2 5% deviations). The proposed approach outperforms traditional approaches, resulting in rate increases of up to 35–40%, especially in instances with more RIS elements. These findings illustrate RIS technology's tremendous potential to improve system capacity and coverage, providing useful insights for optimizing RIS adoption in future wireless networks. 
    more » « less
  3. This paper deals with the unavailability of full CSI in ultra-dense user-centric TDD C-RAN. To reduce the channel training overhead, we consider the incomplete CSI case, where only large-scale inter-cluster CSI is available. Channel estimation for intra-cluster CSI is also considered, where we formulate a joint pilot allocation and user equipment (UE) selection problem to maximize the number of admitted UEs with fixed number of pilots. A novel pilot allocation algorithm is proposed by considering the multi-UE pilot interference. Then, we consider robust beam-vector optimization problem subject to UEs' data rate requirements and fronthaul capacity constraints, where the channel estimation error and incomplete inter-cluster CSI are considered. Simulation results demonstrate its superiority over the existing algorithms. 
    more » « less
  4. The rapid and low-power configuration capabilities of Reconfigurable Intelligent Surfaces (RISs) have made them an attractive option for future wireless networks in terms of energy efficiency. They have the ability to greatly increase connection and facilitate low-latency communications. However, because RIS-based systems often have a large number of RIS unit elements and unique hardware constraints, accurate and low-overhead channel estimate remains a crucial challenge. In this study, we offer a channel estimation framework and concentrate on the uplink of a multi-user multiple-input multiple-output (MU-MIMO) communication system driven by RIS. Our primary goal is to enhance the achievable rate and system capacity. We derive a closed-form deterministic expression for the uplink achievable rate under practical scenarios where channel state information (CSI) is not directly known and must be estimated. In contrast to previous studies assuming perfect CSI, our approach incorporates the channel estimation process, leading to a more realistic performance assessment. Extensive simulations validate the tightness of our derived expression compared to the actual achievable rate across various system parameters (with discrepancies typically within 2-5%). The results highlight the significant impact of RIS on system performance enhancement, even with imperfect CSI. Our findings provide crucial insights into the deployment and optimization of RIS-assisted multi-user wireless networks, underscoring their potential for substantial improvements in rate and capacity. 
    more » « less
  5. Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms. 
    more » « less