With the adoption of 5G wireless technology and the Internet-of-Things (IoT) networking, there is a growing interest in serving a dense population of low-complexity devices over shared wireless uplink channels. Different from the traditional scenario of persistent users, in these new networks each user is expected to generate only small bundles of information intermittently. The highly dynamic nature of such demand and the typically low-complexity nature of the user devices calls for a new MAC paradigm that is geared for low-overhead and distributed operation of dynamic users.In this work, we address this need by developing a generic MAC mechanism for estimating the number and coordinating the activation of dynamic users for efficient utilization of the time-frequency resources with minimal public feedback from the common receiver. We fully characterize the throughput and delay performance of our design under a basic threshold-based multi-channel capacity condition, which allows for the use of different channel utilization schemes. Moreover, we consider the Successive-Interference-Cancellation (SIC) Multi-Channel MAC scheme as a specific choice in order to demonstrate the performance of our design for a spectrally-efficient (albeit idealized) scheme. Under the SIC encoding/decoding scheme, we prove that our low-overhead distributed MAC can support maximum throughput, which establishes the efficiency of our design. Under SIC, we also demonstrate how the basic threshold-based success model can be relaxed to be adapted to the performance of a non-ideal success model.
more »
« less
Scalable Multi-Modal Learning for Cross-Link Channel Prediction in Massive IoT Networks
Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms.
more »
« less
- Award ID(s):
- 2232457
- PAR ID:
- 10487130
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9781450399265
- Page Range / eLocation ID:
- 221 to 229
- Format(s):
- Medium: X
- Location:
- Washington DC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Channel state information (CSI) plays a vital role in scheduling and capacity-approaching transmission optimization of massive MIMO communication systems. In frequency division duplex (FDD) MIMO systems, forward link CSI reconstruction at transmitter relies on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent application of recurrent neural networks (RNN) has demonstrated promising results of massive MIMO CSI feedback compression. However, the cost of computation and memory associated with RNN deep learning remains high. In this work, we exploit channel temporal coherence to improve learning accuracy and feedback efficiency. Leveraging a Markovian model, we develop a deep convolutional neural network (CNN)-based framework called MarkovNet to efficiently encode CSI feedback to improve accuracy and efficiency. We explore important physical insights including spherical normalization of input data and deep learning network optimizations in feedback compression. We demonstrate that MarkovNet provides a substantial performance improvement and computational complexity reduction over the RNN-based work.We demonstrate MarkovNet’s performance under different MIMO configurations and for a range of feedback intervals and rates. CSI recovery with MarkovNet outperforms RNN-based CSI estimation with only a fraction of computational cost.more » « less
-
Application of massive multiple-input multipleoutput (MIMO) systems to frequency division duplex (FDD) is challenging mainly due to the considerable overhead required for downlink training and feedback. Channel extrapolation, i.e., estimating the channel response at the downlink frequency band based on measurements in the disjoint uplink band, is a promising solution to overcome this bottleneck. This paper presents measurement campaigns obtained by using a wideband (350 MHz) channel sounder at 3.5 GHz composed of a calibrated 64 element antenna array, in both an anechoic chamber and outdoor environment. The Space Alternating Generalized Expectation-Maximization (SAGE) algorithm was used to extract the parameters (amplitude, delay, and angular information) of the multipath components from the attained channel data within the “training” (uplink) band. The channel in the downlink band is then reconstructed based on these path parameters. The performance of the extrapolated channel is evaluated in terms of mean squared error (MSE) and reduction of beamforming gain (RBG) in comparison to the “ground truth”, i.e., the measured channel at the downlink frequency. We find strong sensitivity to calibration errors and model mismatch, and also find that performance depends on propagation conditions: LOS performs significantly better than NLOS.more » « less
-
A 28-GHz multibeam joint communication and sensing system called SideSense is presented, in which a line-of-sight (LoS) beam is used to maintain reliable communication, while other sensing beams are used to enhance physiological motion detection. SideSense decodes the motion frequency and shape from the channel state information (CSI) by first tuning the gain ratio and phase differences between the LoS communication beam and non-LoS (NLoS) beam to maximize the sensing signal-to-noise ratio (SSNR) without significantly degrading the communication channel capacity (CCC). Analytical results based on a bistatic model are presented to show a gain ratio of around 1 and a phase difference of 90° or 270°, which are ideal for optimizing both SSNR and CCC. Experiments based on an array of phased array (APA) beamformers and orthogonal frequency-division multiplexing (OFDM) waveforms with phantom and human subjects are presented to validate the performance of SideSense. Results show that SideSense can improve SSNR by 84% while reducing CCC by 35%, an acceptable decrease within the normal operational parameters of a millimeter-wave (mmWave) communication system, which would not trigger a link reestablishment procedure, e.g., communication beam realignment.more » « less
-
null (Ed.)Channel state information (CSI)-based fingerprinting via neural networks (NNs) is a promising approach to enable accurate indoor and outdoor positioning of user equipments (UEs), even under challenging propagation conditions. In this paper, we propose a positioning pipeline for wireless LAN MIMO-OFDM systems which uses uplink CSI measurements obtained from one or more unsynchronized access points (APs). For each AP receiver, novel features are first extracted from the CSI that are robust to system impairments arising in real-world transceivers. These features are the inputs to a NN that extracts a probability map indicating the likelihood of a UE being at a given grid point. The NN output is then fused across multiple APs to provide a final position estimate. We provide experimental results with real-world indoor measurements under line-of-sight (LoS) and non-LoS propagation conditions for an 80 MHz bandwidth IEEE 802.11ac system using a two-antenna transmit UE and two AP receivers each with four antennas. Our approach is shown to achieve centimeter-level median distance error, an order of magnitude improvement over a conventional baseline.more » « less
An official website of the United States government

