skip to main content


Title: Leveraging virtual professional development to build computational thinking literacies in English language arts classrooms
This article describes the Infusing Computing project, a 4-year study designed to support middle and high school teachers in infusing computational thinking (CT) into their disciplinary teaching. Due to the COVID-19 pandemic, weeklong workshops held in summer 2020 were shifted to a virtual format and utilized emerging technology tools, synchronous and asynchronous sessions, explicit collaborative scaffolds, networking, and digital badging. Specifically, this study examined the experiences of English language arts (ELA) teachers (14 middle school, 13 high school) who participated in the virtual Infusing Computing workshops. Findings demonstrated that ELA teachers were able to leverage learning successfully from virtual PD to infuse CT into existing curricula, although teachers differed in the ways that they appropriated and adapted pedagogical tools for CT infusion.  more » « less
Award ID(s):
1742332
NSF-PAR ID:
10388699
Author(s) / Creator(s):
Date Published:
Journal Name:
Contemporary issues in technology and teacher education
Volume:
21
Issue:
4
ISSN:
1528-5804
Page Range / eLocation ID:
626-654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the increasing attention to infusing CT into middle and high school content area classrooms, there is a lack of information about the most effective practices and models to support teachers in their efforts to integrate disciplinary content and CT principles. To address this need, this paper proposes the Code, Connect and Create (3C) professional development (PD) model, which was designed to support middle and high school content area teachers in infusing computational thinking into their classrooms. To evaluate the model, we analyzed quantitative and qualitative data collected from Infusing Computing PD workshops designed for in-service science, math, English language arts, and social studies teachers located in two Southeastern states. Drawing on findings from our analysis of teacher-created learning segments, surveys, and interviews, we argue that the 3C professional development model supported shifts in teacher understandings of the role of computational thinking in content area classrooms, as well as their self-efficacy and beliefs regarding CT integration into disciplinary content. We conclude by offering implications for the use of this model to increase teacher and student access to computational thinking practices in middle and high school classrooms. 
    more » « less
  2. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  3. null (Ed.)
    Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) was an NSF-funded science, technology, engineering, and math (STEM) project (DRL-1312215) (Harriger B. , Harriger, Flynn, & Flynn, 2013) that included a professional development (PD) program for teachers and an afterschool program for students. Curriculum and Assessment Design to Study the Development of Motivation and Computational Thinking for Middle School Students across Three Learning Contexts is an NSF-funded research project (DRL-1640178) (Harriger A. , Harriger, Parker, & Li, 2016) that examines the impact of delivering the TECHFIT curriculum to middle school students in three different contexts: afterschool program, in-school class, core class module. Thus far, the new project has deployed TECHFIT using the first two contexts, both of which use the entire TECHFIT curriculum. The goal of the TECHFIT curriculum is to spark interest in STEM and computational thinking (CT) in middle school students. The curriculum employs two computer programming tools as well as physical computing to introduce participants to STEM and CT. It also includes use of brain blasts to engage participants in a wide variety of physical activity throughout the instruction as well as to enrich their imaginations with different ways to make movement fun. This paper focuses on the process of exergame development using TECHFIT tools as a way to support CT skills development. The process is illustrated using a complete example from inception to a picture of teachers testing the working, physical exergame. 
    more » « less
  4. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  5. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less