skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable elastomer materials with vascular tissue-like rupture mechanics behavior
Abstract Purpose . Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature. Methods . We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson’s ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250 mmHg. Results . Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains ( μ 184  = 0.52–0.88 MPa, σ 184  = 15.90–16.54 MPa, ε 184  = 0.72–0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues ( μ 170  = 0.33–0.7 MPa σ 170  = 2.61–3.67 MPa, ε 170  = 0.69–0.81; μ dow = 0.02–0.09 MPa σ dow = 0.83–2.05 MPa, ε dow = 0.91–1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18 MPa. Conclusion . Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading.  more » « less
Award ID(s):
1662970 2018485
PAR ID:
10389008
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomedical Physics & Engineering Express
Volume:
8
Issue:
5
ISSN:
2057-1976
Page Range / eLocation ID:
055022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction The mechanical vulnerability of the atherosclerotic cap is a crucial risk factor in asymptomatic fibroatheromas. Our research group demonstrated using numerical modeling that microcalcifications (µCalcs) located in the fibrous cap can multiply the tissue background stress by a factor 2-7[1-3]. We showed how this effect depends on the size and the ratio of the gap between particles pairs (h) and their diameter (D) along the tensile axis. In this context, we studied the impact of micro-beads of varying diameters and concentration on the rupture of human fibroatheroma laboratory models. Methods We created silicone-based (DowsilEE-3200, Dow Corning) dumbbell-shaped models (80%-scaled ASTM D412-C) of arterial tissues. Samples were divided into three groups: (1) without μBeads (control, n=12), (2) with μBeads of varying diameter (D=30,50,100μm) at a constant concentration of 1% weight (n=36), (3) with μBeads of constant diameter (D=50μm) at different concentrations (3% and 5% weight) (n=24). Before testing, samples were scanned under Micro-CT, at a resolution of 4µm. Images were then reconstructed in NRecon (SkySCan, v.2014) and structural parameters obtained in CTan (SkyScan, v.2014). These data were used to calculate the number of beads and their respective h/D ratio in a custom-made MATLAB script. We tested the samples using a custom-made micro material testing system equipped with real-time control and acquisition software (LabVIEW, v. 2018, NI). The reaction force and displacement were measured by the system and images of the sample were recorded by a high-resolution camera. The true stress and strain profiles of each sample were obtained by means of Digital Image Correlation (DIC). Results Samples with and without μBeads exhibited a distinct hyperelastic behaviour typical of arterial tissues (Fig1). Comparison of the mean ultimate stress (UTS) between groups was performed by one-way ANOVA test followed by post-hoc pairwise comparison. Regardless of the group, the presence of μBeads determined a statistically significant reduction in UTS (Fig2). Increasing the μBeads concentration was also positively correlated with lower stresses at rupture as more clusters formed resulting in lower values of h/D (Table1). Discussions Our results clearly capture the influence of μBeads on the rupture threshold of a vascular tissue mimicking material. In fact, samples with μBeads exhibit levels of UTS that are around two times lower than the control group. This effect appears to be dependent on the μBeads proximity, as lower h/D correlates with higher UTS reductions. On the other hand, the effect of particle size is not apparent for the diameters considered in this study. The plausible explanation for the observed change in rupture threshold is the increase in stress concentration around spherical μBeads, which we have previously shown in analytical and numerical studies [1-3]. Our experimental observations support our previous studies suggesting that μCalcs located within the fibroatheroma cap may be responsible for significantly increasing the risk of cap rupture that precedes myocardial infarction and sudden death. 
    more » « less
  2. With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed. 
    more » « less
  3. null (Ed.)
    Elastin is a primary structural protein in the arterial wall that contributes to vascular mechanical properties and degrades with aging. Aging is associated with arterial stiffening and an increase in blood pressure. There is evidence that arterial aging follows different timelines with sex. Our objective was to investigate how elastin content affects arterial remodeling in male and female mice with aging. We used male and female wild-type ( Eln +/+ ) and elastin heterozygous ( Eln +/− ) mice at 6, 12, and 24 mo of age and measured their blood pressure and arterial morphology, wall structure, protein content, circumferential stress, stretch ratio, and stiffness. Two arteries were used with varying contents of elastin: the left common carotid and ascending aorta. We show that Eln +/− arteries start at a different homeostatic set point for circumferential wall stress, stretch, and material stiffness but show similar increases with aging to Eln +/+ mice. With aging, structural stiffness is greatly increased, while material stiffness and circumferential stress are only slightly increased, highlighting the importance of maintaining these homeostatic values. Circumferential stretch shows the smallest change with age and may be important for controlling cellular phenotype. Independent sex differences are mostly associated with males being larger than females; however, many of the measured factors show age × sex and/or genotype × sex interactions, indicating that males and females follow different cardiovascular remodeling timelines with aging and are differentially affected by reduced elastin content. NEW & NOTEWORTHY A comprehensive study on arterial mechanical behavior as a function of elastin content, aging, and sex in mice. Elastin haploinsufficient arteries start at a different homeostatic set point for mechanical parameters such as circumferential stress, stretch, and material stiffness. Structural stiffness of the arterial wall greatly increases with aging, as expected, but there are interactions between sex and aging for most of the mechanical parameters that are important to consider in future work. 
    more » « less
  4. The biological response of a coronary artery can be assessed measuring the radial stress of the arterial wall, which depend on the location, arterial tortuosity, and cardiac cycle. We sought to study the radial stress and investigate which geometric distribution of stent struts is associated with favorable biologic response in tortuous coronary arteries. 
    more » « less
  5. The biological response of a coronary artery can be assessed measuring the radial stress of the arterial wall, which depend on the location, arterial tortuosity, and cardiac cycle. We sought to study the radial stress and investigate which geometric distribution of stent struts is associated with favorable biologic response in tortuous coronary arteries. 
    more » « less