skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Characterization of Additively Manufactured Metals from ADDERE Printing
IMECE2022-88299 Midwest Engineered Systems Inc. has created a novel laser wire metal deposition process, ADDere manufacturing. ADDere has a much higher deposition rate than powder bed fusion, making it ideal for large components. In this project, the mechanical properties of ADDere printed materials were tested and compared to typical values found in ASM publications to show the quality of materials manufactured by the ADDere printing process. A detailed material analysis was performed on samples made from Ti-6Al-4V and 17-4 PH stainless steel. This work builds upon an earlier study of samples made from 17-4 PH that were produced using a single direction pattern. In this project, the 17-4 PH samples were printed in a cross hatched pattern, and testing results were compared to existing data from single direction samples of the previous research. The Ti-6Al-4V samples were created in two builds. One using the uni-directional method and the other with the crossed pattern. Testing specimens were removed from the samples using a water jet cutter and further machined into ASTM tensile bars and metallurgic mounts to perform a thorough material evaluation. The Ti-6Al-4V sample met the expected values in the ASM literature, and the cross hatched 17-4 PH exhibited a higher hardness and better microstructure than the single direction samples from the previous work. It was also observed that when the Ti64 samples were manufactured in the cross hatched pattern, the properties indicated slight improvement and more homogeneity than those printed in single layer direction. The obtained results indicate that ADDere’s printing process can produce highly refined materials that are customizable with their expected uses. This work showcases an excellent industry collaboration of an undergraduate research experience.  more » « less
Award ID(s):
2045738
PAR ID:
10389240
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASME International Mechanical Engineering Congress and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of build orientation on the fatigue behavior of additively-manufactured Ti-6Al- 4V using a Laser-Based Power Bed Fusion (L-PBF) process is investigated. Ti-6Al-4V rods were manufactured in vertical, horizontal, and 45º angle orientations. The specimens were then machined and polished along the gage section in order to reduce the effects of surface roughness on fatigue behavior. Fully-reversed strain-controlled uniaxial fatigue tests were performed at various strain amplitudes with frequencies adjusted to maintain an average constant strain rate throughout testing. Results indicate slight variation in fatigue behavior of specimens fabricated in the different orientations investigated. Fractography was conducted using scanning electron microscopy after mechanical testing in order to investigate the crack initiation sites and determine the defect responsible for the failure. The experimental program utilized and results obtained will be presented and discussed. 
    more » « less
  2. In this work, a Ni-alloy Deloro-22 was laser-deposited on a Ti–6Al–4V bar substrate with multiple sets of laser processing parameters. The purpose was to apply laser surface modification to synthesize different combinations of ductile TiNi and hard Ti2Ni intermetallic phases on the surface of Ti–6Al–4V in order to obtain adjustable surface properties. Scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction were applied to reveal the deposited surface microstructure and phase. The effect of processing parameters on the resultant compositions of TiNi and Ti2Ni was discussed. The hardness of the deposition was evaluated, and comparisons with the Ti–6Al–4V bulk part were carried out. They showed a significant improvement in surface hardness on Ti–6Al–4V alloys after laser processing, and the hardness could be flexibly adjusted by using this laser-assisted surface modification technique. 
    more » « less
  3. Balancing strength and ductility is crucial for structural materials, yet often presents a paradoxical challenge. This research focuses on crafting a unique bimetallic structure, combining non-magnetic, stainless steel 316L (SS316L) with limited strength but enhanced ductility and magnetic, martensitic 17-4 PH with higher strength but lower ductility. Utilizing a powder-based laser-directed energy deposition (L-DED) system, two vertical bimetallic configurations (SS316L/17-4 PH) and a radial bimetallic structure (SS316L core encased in 17-4 PH) were fabricated. Monolithic SS316L, 17-4 PH, and a 50% SS316L/50% 17-4 PH mixture were printed. The printed samples' phase, microstructure, room temperature mechanical properties, and fracture morphology were examined in as-printed conditions. Bimetallic samples exhibited both phases, with a smooth grain transition at the interface. Radial bimetallic samples demonstrated higher mechanical strength than other compositions, except 17-4 PH. These findings showcase the potential of the L-DED approach for creating functional components with tailored mechanical properties. 
    more » « less
  4. This study investigated the influence of diverse laser processing parameters on the thermophysical properties of Ti-6Al-4V and AlSi10Mg alloys manufactured via laser powder bed fusion. During fabrication, the laser power (50 W, 75 W, 100 W) and laser scanning speed (0.2 m/s, 0.4 m/s, 0.6 m/s) were adjusted while keeping other processing parameters constant. Besides laser processing parameters, this study also explored the impact of test temperatures on the thermophysical properties of the alloys. It was found that the thermophysical properties of L-PBF Ti-6Al-4V alloy samples were sensitive to laser processing parameters, while L-PBF AlSi10Mg alloy showed less sensitivity. In general, for the L-PBF Ti-6Al-4V alloy, as the laser power increased and laser scan speed decreased, both thermal diffusivity and conductivity increased. Both L-PBF Ti-6Al-4V and L-PBF AlSi10Mg alloys demonstrated similar dependence on test temperatures, with thermal diffusivity and conductivity increasing as the test temperature rose. The CALPHAD software Thermo-Calc (2023b), applied in Scheil Solidification Mode, was utilized to calculate the quantity of solution atoms, thus enhancing our understanding of observed thermal conductivity variations. A detailed analysis revealed how variations in laser processing parameters and test temperatures significantly influence the alloy’s resulting density, specific heat, thermal diffusivity, and thermal conductivity. This research not only highlights the importance of processing parameters but also enriches comprehension of the mechanisms influencing these effects in the domain of laser powder bed fusion.

     
    more » « less
  5. This study investigates the disparate impact of internal pores on the fracture behavior of two metal alloys fabricated via laser powder bed fusion (L-PBF) additive manufacturing (AM)—316L stainless steel and Ti-6Al-4V. Data from mechanical tests over a range of stress states for dense samples and those with intentionally introduced penny-shaped pores of various diameters were used to contrast the combined impact of pore size and stress state on the fracture behavior of these two materials. The fracture data were used to calibrate and compare multiple fracture models (Mohr-Coulomb, Hosford-Coulomb, and maximum stress criteria), with results compared in equivalent stress (versus stress triaxiality and Lode angle) space, as well as in their conversions to equivalent strain space. For L-PBF 316L, the strain-based fracture models captured the stress state dependent failure behavior up to the largest pore size studied (2400 µm diameter, 16% cross-sectional area of gauge region), while for L-PBF Ti-6Al-4V, the stress-based fracture models better captured the change in failure behavior with pore size up to the largest pore size studied. This difference can be attributed to the relatively high ductility of 316L stainless steel, for which all samples underwent significant plastic deformation prior to failure, contrasted with the relatively low ductility of Ti-6Al-4V, for which, with increasing pore size, the displacement to failure was dominated by elastic deformation. 
    more » « less