skip to main content


Title: Induced dormancy in Indian meal moth Plodia interpunctella (Hübner) and its impact on the quality improvement for mass rearing in parasitoid Habrobracon hebetor (Say)
Abstract A steady supply of hosts at the susceptible stage for parasitism is a major component of mass rearing parasitoids for biological control programs. Here we describe the effects of storing 5th instar Plodia interpunctella larvae in dormancy on subsequent host development in the context of host colony maintenance and effects of the duration of host dormancy on the development of Habrobracon hebetor parasitoids reared from dormant hosts. We induced dormancy with a combination of short daylength (12L:12D) and lower temperature (15°C), conditions known to induce diapause in this species, and held 5th instar larvae of P. interpunctella for a series of dormancy durations ranging from 15 to 105 days. Extended storage of dormant 5th instar larvae had no significant impacts on survival, development, or reproductive potential of P. interpunctella , reinforcing that dormant hosts have a substantial shelf life. This ability to store hosts in dormancy for more than 3 months at a time without strong negative consequences reinforces the promise of using dormancy to maintain host colonies. The proportion of hosts parasitized by H. hebetor did not vary significantly between non-dormant host larvae and dormant host larvae stored for periods as long as 105 days. Concordant with a prior study, H. hebetor adult progeny production from dormant host larvae was higher than the number of progeny produced on non-dormant host larvae. There were no differences in size, sex ratio, or reproductive output of parasitoids reared on dormant hosts compared to non-dormant hosts stored for up to 105 days. Larval development times of H. hebetor were however longer when reared on dormant hosts compared to non-dormant hosts. Our results agree with other studies showing using dormant hosts can improve parasitoid mass rearing, and we show benefits for parasitoid rearing even after 3 months of host dormancy.  more » « less
Award ID(s):
1639005 1257298
NSF-PAR ID:
10389311
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Bulletin of Entomological Research
Volume:
112
Issue:
6
ISSN:
0007-4853
Page Range / eLocation ID:
766 to 776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 1. Temperature strongly influences the rates of physiological processes in insects, including the herbivoreManduca sextaand its larval endoparasitoidCotesia congregata. Parasitisation byC. congregatadecreases the growth and consumption of food by larvalM. sexta. However, the effects of temperature on parasitised caterpillars and the developing wasp larvae are largely unknown.

    2. In this study, parasitised and unparasitised caterpillars were reared at three constant temperatures (20, 25 and 30 °C) throughout larval development. Caterpillar mass gain and consumption were monitored daily until wandering (unparasitised control group) or wasp emergence (parasitised group) was observed. Development time and survival to emergence were measured as metrics of parasitoid performance.

    3. ParasitisedM. sextadeveloped more slowly than unparasitised controls, but had similar cumulative consumption until the terminal instar. Parasitised caterpillars with relatively large parasitoid loads had higher rates of consumption and growth than those with smaller loads. Both temperature and parasitoid load strongly affected wasp success. Mean development time to wasp emergence increased with low temperatures and with large loads. The combination of warm temperature and large parasitoid loads greatly reduced wasp survival.

    4. These results demonstrate the interactive effects of rearing temperature and parasitisation on host consumption and growth rates throughout larval development. In addition, wasp performance was affected by the interaction of temperature and parasitoid load size. High temperatures alter the dynamics of the interaction between the parasitoid and its caterpillar host, which could have far‐reaching impacts as the global temperatures continue to rise.

     
    more » « less
  2. Abstract

    Aphidius matricariaeHaliday (Hymenoptera: Braconidae) is a polyphagous solitary endoparasitoid, attacking more than 40 species of aphids. This parasitoid is an important commercial product of many companies that produce biological control agents. Storage at low temperature increases the shelf life of many biocontrol agents, allowing companies to provide a steady and sufficient supply of insects for biocontrol programs. In the current study, the effects of cold storage of 1‐day‐old host mummies withA. matricariaefor various time periods (5, 10, 15, 20, and 30 days) at 5 °C on the parasitoid’s key life‐history traits were investigated. Parameters assessed after storage included adult emergence rate, offspring sex ratio, adult longevity, oviposition period, fecundity, and life‐table parameters (R0, r, λ, T, and DT). Our results showed that the mummies ofA. matricariaecould be stored at 5 °C for 5 days without loss of quality and for 10–15 days with minimal reduction in quality (e.g., some reduction in adult longevity and R0). If parasitoids were stored for >15 days, quality was more strongly affected. In conclusion,A. matricariaepupae could be stored at 5 °C for up to 15 days without significant negative post‐storage effects on fitness of the parasitoid. These results could be used to improve the planning of mass rearing and mass release ofA. matricariaein augmentative biological control programs.

     
    more » « less
  3. Abstract

    When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid waspCotesia congregatasuffers high mortality when reared throughout development at temperatures that are nonstressful for its host,Manduca sexta. However, the effects of short‐term heat stress during parasitoid development are unknown in this host–parasitoid system.

    Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance ofC.congregataand its host¸M.sexta. We find that the developmental timing of short‐term heat waves strongly determines parasitoid and host outcomes.

    Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long‐lived hosts. Heat waves during the 1st‐instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.

    Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host–parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.

     
    more » « less
  4. The increase in emerging harmful algal blooms in the last decades has led to an extensive concern in understanding the mechanisms behind these events. In this paper, we assessed the growth of two blooming dinoflagellates (Alexandrium minutum and Heterocapsa triquetra) and their susceptibility to infection by the generalist parasitoid Parvilucifera rostrata under a temperature gradient. The growth of the two dinoflagellates differed across a range of temperatures representative of the Penzé Estuary (13 to 22 °C) in early summer. A. minutum growth increased across this range and was the highest at 19 and 22 °C, whereas H. triquetra growth was maximal at intermediate temperatures (15–18 °C). Interestingly, the effect of temperature on the parasitoid infectivity changed depending on which host dinoflagellate was infected with the dinoflagellate responses to temperature following a positive trend in A. minutum (higher infections at 20–22 °C) and a unimodal trend in H. triquetra (higher infections at 18 °C). Low temperatures negatively affected parasitoid infections in both hosts (i.e., “thermal refuge”). These results demonstrate how temperature shifts may not only affect bloom development in microalgal species but also their control by parasitoids. 
    more » « less
  5. Abstract

    Insect parasitoids, and the arthropod hosts they consume during development, are important ecological players in almost all environments across the globe. As ectothermic organisms, both parasitoid and host are strongly impacted by environmental temperature. If thermal tolerances differ between host insect and parasitoid, then the outcome of their interaction will be determined by the ambient temperature. As mean temperatures continue to rise and extreme temperatures become more frequent, we must determine the effect of high temperature stress on host–parasitoid systems to predict how they will fare in the face of climate change.

    The majority of studies conducted on host–parasitoid systems focus on either performance under constant temperature or a fixed metric of thermal tolerance (CTmax) for individual organisms. However, performance at constant temperatures is not predictive of performance under ecologically relevant, fluctuating temperatures and measurements of thermal thresholds provide little information regarding the effects of temperature throughout development. We address this by testing the effects of increasing mean temperature in both constant and fluctuating (±10°C) environments throughout development on the performance of the parasitoid waspCotesia congregataand its lepidopteran larval host,Manduca sexta.

    The growth ofM. sextawas influenced by mean temperature, diurnal fluctuations and parasitization status. Caterpillar growth rate increased with increasing mean temperature, but decreased in response to diurnal fluctuations and parasitization byC. congregatawasps.

    Wasp survival decreased with increasing mean temperature and with diurnal fluctuations. The effect of diurnal fluctuations was stronger at higher mean temperatures. Diurnal fluctuations at our highest mean temperature treatment (30 ± 10°C) resulted in complete wasp mortality, and parasitized hosts displayed abnormal physiology, wherein they failed to exhibit wasp emergence, did not enter the prepupal stage, continued to feed and grew up to twofold larger than a normal, unparasitized caterpillar.

    Our results indicate hosts and parasitoids in this system have different thermal tolerances during development; the parasitoid wasp suffered complete mortality at a temperature regime that is mildly stressful for the unparasitized caterpillar host species. Our findings suggestC. congregatawill suffer more severely under increasing temperatures thanM. sexta, with cascading trophic and ecological effects.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less