skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LAGOS‐US RESERVOIR : A database classifying conterminous U.S. lakes 4 ha and larger as natural lakes or reservoir lakes
Abstract The LAGOS‐US RESERVOIR data module classifies all 137,465 lakes ≥ 4 ha in the conterminous U.S. into three categories using a machine learning predictive model based on visual interpretation of lake outlines and a lake shape classification rule. Natural Lakes (NLs) are defined as naturally formed, lacking large, flow‐altering structures; Reservoir Class A's (RSVR_A) are defined as lakes likely human‐made or human‐altered by a large water control structure; and Reservoir Class B's (RSVR_Bs) are lakes likely human‐made but are not connected to streams and have a shape rare in NLs. We trained machine learning models on 12,162 manually classified lakes to predict assignment as an NL or RSVR, then further classified RSVRs based on NHD Fcodes, isolation, and angularity. Our classification indicates that > 46% of lakes ≥ 4 ha in the conterminous U.S. are reservoir lakes. These data can be easily combined with other LAGOS‐US modules and U.S. national databases for the broad‐scale study of reservoir lakes and NLs.  more » « less
Award ID(s):
1638679
PAR ID:
10389351
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
8
Issue:
2
ISSN:
2378-2242
Page Range / eLocation ID:
p. 267-285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The LAGOS-US RESERVOIR data module (hereafter, RESERVOIR) classifies all 137,465 lakes > 4 hectares in the conterminous U.S. into one of the following three categories using a machine-learning predictive model based on visual interpretation of lake outlines and a classification rule based on lake shape. Natural Lakes (NLs) are defined as lakes that are likely to be entirely or mostly naturally-formed and that do not have large, flow-altering structures on or near them; Reservoir Class A’s (RSVR_A) are defined as lakes that are likely to be either human-made or highly human-altered by the presence of a relatively large water control structure that appears to significantly change the flow of water; and Reservoir Class B’s (RSVR_Bs) are lakes that are likely to be entirely human-made based on isolation from rivers and a highly angular shape that is rarely, if ever, seen in natural lakes also often. We trained the machine learning models on 12,162 manually-classified lakes to assign probabilities of a lake being in 1 of 2 of the categories (NL or RSVR), then we further classified the RSVR classification into either A or B based on NHD Fcodes, isolation, and angularity. The data module includes a detailed User Guide, metadata tables, and a data table that includes information such as location, lake geometry, surface water connectivity class, and official name. Using our definition, our classification indicates that over 46 % of lakes > 4 ha in the conterminous U.S. are reservoir lakes. These data can be combined with other LAGOS-US data modules and U.S. national databases using unique lake identifiers to study both reservoir lakes and natural lakes at broad scales. 
    more » « less
  2. The LAGOS-US LAKE DEPTH v1.0 module (hereafter, called DEPTH) contains in situ measurements of lake depth for a subset of all lakes (n = 17,675) in the conterminous U.S. > 1 ha (3.7% of 479,950) that are in the LAGOS-US LOCUS v1.0 data module (Smith et al. 2021). All 17,675 lakes in DEPTH have a maximum depth value and 6,137 lakes have a mean depth. DEPTH includes approximately 65 data sources obtained from community, government, and university monitoring programs, as well as academic reports and commercial websites. DEPTH includes lake identifiers, lake location, lake area, lake depth (both maximum and mean depth when available), source information, and data flags. The unique lake identifier (lagoslakeid) for all lakes is the same one used in LAGOS-US LOCUS v1.0. 
    more » « less
  3. The LAGOS-US LIMNO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The LIMNO module contains in situ observations of 47 parameters of lake physics, chemistry, and biology (hereafter referred to as chemistry) from lake surface samples (defined as observations taken from the epilimnion of a lake) obtained from the Water Quality Portal, the National Lakes Assessment (2007, 2012, 2017), and NEON programs. LIMNO provides 3,511,020 observations across all parameters collected between 1975 and 2021 from 20,329 lakes; the number of observations per lake ranged from 1 to 20,605 with a median of 32. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other, as well as other comprehensive lake data products such as the USGS NHD), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and GEO (characteristics defining geospatial and temporal ecological setting quantified at multiple spatial divisions) that are each found in their own data packages. 
    more » « less
  4. The LAGOS-US GEO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The GEO module contains data on the geospatial and temporal ecological setting (e.g., land use, terrain, soils, climate, hydrology, atmospheric deposition, and human influence) quantified at multiple spatial divisions (e.g., equidistant buffers around lakes, watersheds, hydrologic basins, political boundaries, and ecoregions) relevant to the LAGOS-US lake population defined in the LAGOS-US LOCUS module. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and LIMNO (in situ lake physical, chemical, and biological measurements through time) that are each found in their own data packages. 
    more » « less
  5. Abstract A variety of classification approaches are used to facilitate understanding, prediction, monitoring, and the management of lakes. However, broad‐scale applicability of current approaches is limited by either the need for in situ lake data, incompatibilities among approaches, or a lack of empirical testing of approaches based on ex situ data. We developed a new geographic classification approach for 476,697 lakes ≥ 1 ha in the conterminous U.S. based on lake archetypes representing end members along gradients of multiple geographic features. We identified seven lake archetypes with distinct combinations of climate, hydrologic, geologic, topographic, and morphometric properties. Individual lakes were assigned weights for each of the seven archetypes such that groups of lakes with similar combinations of archetype weights tended to cluster spatially (although not strictly contiguous) and to have similar limnological properties (e.g., concentrations of nutrients, chlorophylla(Chla), and dissolved organic carbon). Further, archetype lake classification improved commonly measured limnological relationships (e.g., between nutrients and Chla) compared to a global model; a discrete archetype classification slightly outperformed an ecoregion classification; and considering lakes as continuous mixtures of archetypes in a more complex model further improved fit. Overall, archetype classification of US lakes as continuous mixtures of geographic features improved understanding and prediction of lake responses to limnological drivers and should help researchers and managers better characterize and forecast lake states and responses to environmental change. 
    more » « less