skip to main content


Title: Magnetic Outbreak Associated with Exploding Granulations
Abstract Diagnosing the spatiotemporal pattern of magnetic flux on the Sun is vital for understanding the origin of solar magnetism and activity. Here, we report a new form of flux appearance, magnetic outbreak, using observations with an extremely high spatial resolution of 0.″16 from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. Magnetic outbreak refers to an early growth of unipolar magnetic flux and its later explosion into fragments, in association with plasma upflow and exploding granulations; each individual fragment has flux of 10 16 –10 17 Mx, moving apart with a velocity of 0.5–2.2 km s −1 . The magnetic outbreak takes place in the hecto-Gauss region of pore moats. In this study, we identify six events of magnetic outbreak during 6 hr observations over an approximately 40″ × 40″ field of view. The newly discovered magnetic outbreak might be the first evidence of the long-anticipated convective blowup.  more » « less
Award ID(s):
1821294 2108235 2309939
NSF-PAR ID:
10389463
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
942
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳10 14 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day −1 , constraining the density of the driving region to ρ ∼ 10 10 g cm −3 , at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem. 
    more » « less
  2. Hotspot tracks (chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are often simple, nearly linear chains of seamounts, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts (most are flat-topped guyots). The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. Walvis Ridge, forming the older part of the track, is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamounts of the Guyot Province, to collect igneous rocks to better understand the formation of volcanic edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard Coronavirus (COVID-19) outbreak, Expedition 391 proceeded to drill at four of the proposed sites: three sites on Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track of the Guyot Province, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the islands of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to Gough Island). The first hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge just north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The sediments ranged in age from Late Pleistocene (~0.43–1.24 Ma) to Late Cretaceous (Campanian; 72–78 Ma). The igneous basement comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first of these holes was terminated because a bit jammed shortly after entering the igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Late Pleistocene (~0.43–1.24 Ma) to Late Cretaceous (Campanian; ~79–81.38 Ma). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement recovered in Hole U1576B yielded 11 submarine lava units (total thickness = ~65 m). The flows range from pillows to massive flows with compositions varying from tholeiitic basalt to basaltic andesite, only the second occurrence of the latter composition recovered from the TGW track thus far. These units are separated by seven sedimentary chalk units that range 0.1–11.6 m in thickness, implying a long-term interplay of sedimentation and lava eruptions. These intercalated sediments revealed Upper Cretaceous (Campanian) ages of ~77–79 Ma for the upper two interbeds and ~79–81.38 Ma for the lower beds. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154.8 m thick sedimentary section ranging from the Paleocene (Thanetian; ~58.8 Ma) to Upper Cretaceous (Campanian; ~81.43–83.20 Ma). Igneous basement coring progressed only 39.1 m below the sediment/basalt contact, recovering three massive submarine tholeiitic basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that the former volcanic basement formed just before the end of the Cretaceous Normal Superchron and the latter during Chron 33r, shortly afterward. Biostratigraphic and paleomagnetic data suggest that Valdivia Bank becomes younger from east to west. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk (~55.64–63.5 Ma), Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine (some fresh), and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging 0.46–10.19 m in thickness. Investigations of toothpick samples from the intercalated sediments were examined, each revealing the same age range of ~63.5–64.81 Ma (lower Paleocene; Danian). Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Nearly 7 months after Expedition 391, JOIDES Resolution transited from Cape Town to the north Atlantic. During this transit (Expedition 397T), 7.9 days of ship time were used to drill two holes (U1584A and U1585A) at sites on the Gough and Tristan tracks that had been omitted because of COVID-19–related time loss on the earlier cruise. For both, coring was begun only a short distance above the igneous basement to save time. The 75.2 m thick section drilled in Hole U1584A contains two sedimentary units: clay-rich carbonate sediments overlie a pumice-dominated volcaniclastic deposit containing basalt fragments. Because the goal was to core basalt and the base of the volcaniclastic deposit was not imaged in the seismic profile, the hole was terminated early to save operation time for the next site. In Hole U1585A, coring penetrated a 273.5 m thick sediment section overlying an 81.2 m thick pile of massive basalt flows. The sediment section is divided into four units: The uppermost unit consists of nannofossil chalk; The two intermediate units contain alternating chalk and volcaniclastic sediments containing several breccia units; and The lowermost unit consists of volcanic breccia containing juvenile blocks, bombs, and accretionary lapilli. This thick sedimentary section documents a transition from shallow-water volcanism to open-ocean sedimentation as the seamount subsided. The thick underlying basalt section is made up of four sparsely to highly phyric massive flows, the thickest of which is >43 m thick. Samples of these units are mostly basalt with a few trachybasalts and one trachyandesite. Although the igneous penetration was less than planned, coring during Expeditions 391 and 397T obtained samples that clearly will lead to an improved understanding of the evolution of the TGW hotspot and its track. Reasonable recovery of fresh basalt in some holes provides ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less
  3. Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less
  4. Abstract

    We present a comprehensive radiative magnetohydrodynamic simulation of the quiet Sun and large solar active regions. The 197 Mm wide simulation domain spans from 18(10) Mm beneath the photosphere to 113 Mm in the solar corona. Radiative transfer assuming local thermal equilibrium, optically thin radiative losses, and anisotropic conduction transport provide the necessary realism for synthesizing observables to compare with remote-sensing observations of the photosphere and corona. This model self-consistently reproduces observed features of the quiet Sun, emerging and developed active regions, and solar flares up to M class. Here, we report an overview of the first results. The surface magneto-convection yields an upward Poynting flux that is dissipated in the corona and heats the plasma to over 1 MK. The quiescent corona also presents ubiquitous propagating waves, jets, and bright points with sizes down to 2 Mm. Magnetic flux bundles emerge into the photosphere and give rise to strong and complex active regions with over 1023Mx magnetic flux. The coronal free magnetic energy, which is approximately 18% of the total magnetic energy, accumulates to approximately 1033erg. The coronal magnetic field is clearly non-force-free, as the Lorentz force needs to balance the pressure force and viscous stress as well as drive magnetic field evolution. The emission measure fromlog10T=4.5tolog10T>7provides a comprehensive view of the active region corona, such as coronal loops of various lengths and temperatures, mass circulation by evaporation and condensation, and eruptions from jets to large-scale mass ejections.

     
    more » « less
  5. Abstract

    This paper presents a stochastic three-dimensional focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock suprathermal solar wind ions. A time-backward stochastic simulation is employed to solve the transport equation to obtain the SEP time–intensity profile at any location, energy, and pitch angle. The model is applied to a SEP event on 2020 May 29, observed by STEREO-A close to ∼1 au and by Parker Solar Probe (PSP) when it was about 0.33 au away from the Sun. The SEP event was associated with a very slow CME with a plane-of-sky speed of 337 km s−1at a height below 6RSas reported in the SOHO/LASCO CME catalog. We compute the time profiles of particle flux at PSP and STEREO-A locations, and estimate both the spectral index of the proton energy spectrum for energies between ∼2 and 16 MeV and the equivalent path length of the magnetic field lines experienced by the first arriving SEPs. We find that the simulation results are well correlated with observations. The SEP event could be explained by the acceleration of particles by a weak CME shock in the low solar corona that is not magnetically connected to the observers.

     
    more » « less