skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient hyperactive piggyBac transgenesis in Plodia pantry moths
While piggyBac transposon-based transgenesis is widely used in various emerging model organisms, its relatively low transposition rate in butterflies and moths has hindered its use for routine genetic transformation in Lepidoptera. Here, we tested the suitability of a codon-optimized hyperactive piggyBac transposase ( hyPBase ) in mRNA form to deliver and integrate transgenic cassettes into the genome of the pantry moth Plodia interpunctella . Co-injection of hyPBase mRNA with donor plasmids successfully integrated 1.5–4.4 kb expression cassettes driving the fluorescent markers EGFP, DsRed, or EYFP in eyes and glia with the 3xP3 promoter. Somatic integration and expression of the transgene in the G 0 injected generation was detectable from 72-h embryos and onward in larvae, pupae and adults carrying a recessive white-eyed mutation. Overall, 2.5% of injected eggs survived into transgene-bearing adults with mosaic fluorescence. Subsequent outcrossing of fluorescent G 0 founders transmitted single-insertion copies of 3xP3::EGFP and 3xP3::EYFP and generated stable isogenic lines. Random in-crossing of a small cohort of G 0 founders expressing 3xP3::DsRed yielded a stable transgenic line segregating for more than one transgene insertion site. We discuss how hyPBase can be used to generate stable transgenic resources in Plodia and other moths.  more » « less
Award ID(s):
2109536 1923147
PAR ID:
10389474
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Genome Editing
Volume:
4
ISSN:
2673-3439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Enhanced green fluorescent protein (EGFP)—one of the most widely applied genetically encoded fluorescent probes—carries the threonine-tyrosine-glycine (TYG) chromophore. EGFP efficiently undergoes green-to-red oxidative photoconversion (“redding”) with electron acceptors. Enhanced yellow fluorescent protein (EYFP), a close EGFP homologue (five amino acid substitutions), has a glycine-tyrosine-glycine (GYG) chromophore and is much less susceptible to redding, requiring halide ions in addition to the oxidants. In this contribution we aim to clarify the role of the first chromophore-forming amino acid in photoinduced behavior of these fluorescent proteins. To that end, we compared photobleaching and redding kinetics of EGFP, EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and EYFP-G65T. Measurements showed that T65G mutation significantly increases EGFP photostability and inhibits its excited-state oxidation efficiency. Remarkably, while EYFP-G65T demonstrated highly increased spectral sensitivity to chloride, it is also able to undergo redding chloride-independently. Atomistic calculations reveal that the GYG chromophore has an increased flexibility, which facilitates radiationless relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially compensates for the loss of quantum efficiency due to radiationless relaxation. The shorter excited-state lifetime of the GYG chromophore is responsible for its increased photostability and resistance to redding. In EYFP and EYFP-G65T, the chromophore is stabilized by π-stacking with Tyr203, which suppresses its twisting motions relative to EGFP. 
    more » « less
  2. Abstract Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2‐EYFP (ChR2‐EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2‐EYFP skeletal muscle and introduced the ChR2‐only mouse model that expresses light‐responsive ChR2 without the fluorescent EYFP in their skeletal muscles. We found a significant reduction in the contractile ability of ChR2‐EYFP muscles compared with ChR2‐only and WT mice, observed under both electrical and optogenetic stimulation paradigms. Bulk RNAseq identified the downregulation of genes associated with transmembrane transport and metabolism in ChR2‐EYFP muscle, while the ChR2‐only muscle did not demonstrate any notable deviations from WT muscle. The RNAseq results were further corroborated by a reduced protein‐level expression of ion channel‐related HCN2 in ChR2‐EYFP muscles and gluconeogenesis‐modulating FBP2 in both ChR2‐EYFP and ChR2‐only muscles. Overall, this study reveals an intrinsic skeletal dysfunction in the widely used ChR2‐EYFP mice model and underscores the importance of considering alternative optogenetic models, such as the ChR2‐only, for future research in skeletal muscle optogenetics. 
    more » « less
  3. ABSTRACT The implementation of site‐specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low‐throughput enrichment strategies, such as cell sorting. This study presents a recombinase‐mediated cassette exchange (RMCE)‐capable SSI system that uses only chemical selection to enrich for transgene‐expressing RMCE pools in less than one month. The system was used to compare eight mAb expression cassettes containing two novel genetic regulatory elements, theAzin1CpG island and the Piggybac transposase 5’ terminal repeat, in various orientations to improve the expression of two therapeutic mAbs from two genomic loci. Similar patterns of productivity and mRNA expression were observed across sites and mAbs, and the best performing cassette universally increased mAb productivity by 7‐ to 11‐fold. This flexible system allows for higher‐throughput comparison of expression cassettes from a consistent clonal and transcriptional background to optimize RMCE‐derived cell lines for industrial production of mAbs. 
    more » « less
  4. Abstract We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing. 
    more » « less
  5. Gavis, E (Ed.)
    Abstract Bacteriophage integrase-directed insertion of transgenic constructs into specific genomic loci has been widely used by Drosophila community. The attP40 landing site located on the second chromosome gained popularity because of its high inducible transgene expression levels. Here, unexpectedly, we found that homozygous attP40 chromosome disrupts normal glomerular organization of Or47b olfactory receptor neuron (ORN) class in Drosophila. This effect is not likely to be caused by the loss of function of Msp300, where the attP40 docking site is inserted. Moreover, the attP40 background seems to genetically interact with the second chromosome Or47b-GAL4 driver, which results in a similar glomerular defect. Whether the ORN phenotype is caused by the neighbouring genes around Msp300 locus in the presence of attP40-based insertions or a second unknown mutation in the attP40 background remains elusive. Our findings tell a cautionary tale about using this popular transgenic landing site, highlighting the importance of rigorous controls to rule out the attP40 landing site-associated background effects. 
    more » « less