skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A Unified Model for the Coevolution of Galaxies and Their Circumgalactic Medium: The Relative Roles of Turbulence and Atomic Cooling Physics
Abstract The circumgalactic medium (CGM) plays a pivotal role in regulating gas flows around galaxies and thus shapes their evolution. However, the details of how galaxies and their CGM coevolve remain poorly understood. We present a new time-dependent two-zone model that self-consistently tracks not just mass and metal flows between galaxies and their CGM but also the evolution of the global thermal and turbulent kinetic energy of the CGM. Our model accounts for heating and turbulence driven by both supernova winds and cosmic accretion as well as radiative cooling, turbulence dissipation, and halo outflows due to CGM overpressurization. We demonstrate that, depending on parameters, the CGM can undergo a phase transition (“thermalization”) from a cool, turbulence-supported phase to a virial-temperature, thermally supported phase. This CGM phase transition is largely determined by the ability of radiative cooling to balance heating from supernova winds and turbulence dissipation. We perform an initial calibration of our model to the FIRE-2 cosmological hydrodynamical simulations and show that it can approximately reproduce the baryon cycles of the simulated halos. In particular, we find that, for these parameters, the phase transition occurs at high redshift in ultrafaint progenitors and at low redshift in classicalMvir∼ 1011Mdwarfs, while Milky Way–mass halos undergo the transition atz≈ 0.5. We see a similar transition in the simulations though it is more gradual, likely reflecting radial dependence and multiphase gas not captured by our model. We discuss these and other limitations of the model and possible future extensions.  more » « less
Award ID(s):
1652522 1715216 2307327 1835509 2108230
PAR ID:
10475777
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows (ηME, andηZ, here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 1010to 1012M, we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded (ηM∼ 0.1–10) but high-energy-loaded (ηE∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferringηE∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. 
    more » « less
  2. Abstract Turbulent radiative mixing layers play an important role in many astrophysical contexts where cool (≲104K) clouds interact with hot flows (e.g., galactic winds, high-velocity clouds, infalling satellites in halos and clusters). The fate of these clouds (as well as many of their observable properties) is dictated by the competition between turbulence and radiative cooling; however, turbulence in these multiphase flows remains poorly understood. We have investigated the emergent turbulence arising in the interaction between clouds and supersonic winds in hydrodynamicenzo-esimulations. In order to obtain robust results, we employed multiple metrics to characterize the turbulent velocity,vturb. We find four primary results when cooling is sufficient for cloud survival. First,vturbmanifests clear temperature dependence. Initially,vturbroughly matches the scaling of sound speed on temperature. In gas hotter than the temperature where cooling peaks, this dependence weakens with time untilvturbis constant. Second, the relative velocity between the cloud and wind initially drives rapid growth ofvturb. As it drops (from entrainment),vturbstarts to decay before it stabilizes at roughly half its maximum. At late times, cooling flows appear to support turbulence. Third, the magnitude ofvturbscales with the ratio between the hot phase sound-crossing time and the minimum cooling time. Finally, we find tentative evidence for a length scale associated with resolving turbulence. Underresolving this scale may cause violent shattering and affect the cloud’s large-scale morphological properties. 
    more » « less
  3. ABSTRACT We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation, in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma β ≡ Pg/PB to fall, the CGM becomes globally unstable. At the cool disc-to-hot−halo interface, a sharp drop in density boosts Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen, while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal equilibrium. In lower β haloes, CR heating drives a hot, single-phase diffuse wind with velocities v ∝ (theat/tff)−1, which exceeds the escape velocity when theat/tff ≲ 0.4. In higher β haloes, where the Alfven Mach number is higher, CR forces drive multi-phase winds with cool, dense fountain flows and significant turbulence. These flows are CR dominated due to ‘trapping’ of CRs by weak transverse B-fields, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain flows where either the heat or momentum input of CRs dominates. 
    more » « less
  4. Abstract Massive elliptical galaxies harbor large amounts of hot gas (T≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timettiof the thermal instability), and different degrees of stratification (which affect the freefall timetff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσvup to 40 km s−1and logarithmic density dispersion ofσs∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, where min ( t ti ) / t ff 0.6 exp ( 6 σ s ) , in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas. 
    more » « less
  5. Abstract The distribution of gas in the circumgalactic medium (CGM) of galaxies of all types is poorly constrained. Foreground CGMs contribute an extra amount to the dispersion measure (DM) of fast radio bursts (FRBs). We measure this DM excess for the CGMs of 1011–1013Mhalos using the CHIME/FRB first data release, a halo mass range that is challenging to probe in any other way. Because of the uncertainty in the FRBs’ angular coordinates, only for nearby galaxies is the localization sufficient to confidently associate them with intersecting any foreground halo. Thus we stack on galaxies within 80 Mpc, optimizing the stacking scheme to approximately minimize the stack’s variance and marginalize over uncertainties in FRB locations. The sample has 20–30 FRBs intersecting halos with masses of 1011–1012Mand also of 1012–1013M, and these intersections allow a marginal 1σ–2σdetection of the DM excess in both mass bins. The bin of 1011–1012Mhalos also shows a DM excess at 1–2 virial radii. By comparing data with different models for the CGM gas profile, we find that all models are favored by the data up to 2σlevel compared to the null hypothesis of no DM excess. With 3000 more bursts from a future CHIME data release, we project a 4σdetection of the CGM. Distinguishing between viable CGM models by stacking FRBs with CHIME-like localization would require tens of thousands of bursts. 
    more » « less