Abstract The northwest-trending transition zone (TZ) in Arizona (southwestern United States) is an ~100-km-wide physiographic province that separates the relatively undeformed southwestern margin of the Colorado Plateau from the hyperextended Basin and Range province to the southwest. The TZ is widely depicted to have been a Late Cretaceous–Paleogene northeast-dipping erosional slope along which Proterozoic rocks were denuded but not significantly deformed. Our multi-method thermochronological study (biotite 40Ar/39Ar, zircon and apatite [U-Th-Sm]/He, and apatite fission track) of Proterozoic rocks in the Bradshaw Mountains of the west-central Arizona TZ reveals relatively rapid cooling (~10 °C/m.y.) from temperatures of >180 °C to <60 °C between ca. 70 and ca. 50 Ma. Given minimal ca. 70–50 Ma upper-crustal shortening in the TZ, we attribute cooling to exhumation driven by northeastward bulldozing of continental lower crust and mantle lithosphere beneath it by the Farallon flat slab. Bulldozing is consistent with contemporaneous (ca. 70–50 Ma) underplating and initial exhumation of Orocopia Schist to the southwest in western Arizona and Mesozoic garnet-clinopyroxenite xenoliths of possible Mojave batholith keel affinity in ca. 25 Ma TZ volcanic rocks.
more »
« less
Mantle thermochemical variations beneath the continental United States through petrologic interpretation of seismic tomography
The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.
more »
« less
- Award ID(s):
- 1952642
- PAR ID:
- 10389593
- Editor(s):
- Hans Thybo
- Date Published:
- Journal Name:
- Earth and planetary science letters
- ISSN:
- 0012-821X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The deployment of seismic stations and the development of ambient noise tomography and new analysis methods provide an opportunity for higher resolution imaging of Antarctica. Here we review recent seismic structure models and describe their implications for the dynamics and history of the Antarctic upper mantle. Results show that most of East Antarctica is underlain by continental lithosphere to depths of ∼ 200 km. The thickest lithosphere is found in a band 500-1000 km west of the Transantarctic Mountains, representing the continuation of cratonic lithosphere with Australian affinity beneath the ice. Dronning Maud Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic lithospheric disruption. The Transantarctic Mountains mark a sharp boundary between cratonic lithosphere and the warmer upper mantle of West Antarctica. In the Southern Transantarctic Mountains, cratonic lithosphere has been replaced by warm asthenosphere, giving rise to Cenozoic volcanism and an elevated mountainous region. The Marie Byrd Land volcanic dome is underlain by slow seismic velocities extending through the transition zone, consistent with a mantle plume. Slow velocity anomalies beneath the coast from the Amundsen Sea Embayment to the Antarctic Peninsula likely result from upwelling of warm asthenosphere during subduction of the Antarctic-Phoenix spreading center.more » « less
-
Abstract Although seismic velocity and electrical conductivity are both sensitive to temperature, thermal lithosphere properties are derived almost exclusively from seismic data because conductivity is often too strongly affected by minor highly conductive phases to be a reliable indicator of temperature. However, in certain circumstances, electrical observations can provide strong constraints on mantle temperatures. In the southeastern United States (SEUS), magnetotelluric (MT) data require high resistivity values (>300 Ωm) to at least 200‐km depth. As dry mantle mineral conduction laws provide an upper bound on temperature for an observed resistivity value, the only interpretation is that lithospheric temperatures (<1330 °C) persist to 200 km. However, seismic tomography shows that velocities in this region are generally slightly slow with respect to references models; this observation has led to a view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. We show that MT and seismic (tomography, attenuation, receiver function) results are consistent with thick (~200 km), coherent thermal lithosphere in this region. Reduced seismic velocities (relative to reference models) can be explained by considering the effect of finite grain size (anelasticity). Calculated velocity as a function of temperature is overall slower when including anelastic effects, even at reasonable grain sizes of 1 mm to 1 cm; this permits mantle temperatures that are colder than would typically be inferred. We argue for a geodynamic scenario in which the present thermal lithosphere in the SEUS formed in association with the Central Atlantic Magmatic Province and has subsequently survived intact for ~200 Ma.more » « less
-
Abstract To explore seismic structures beneath the Australian continents and subduction zone geometry around the Australian plate, we introduce a new radially‐anisotropic shear‐wavespeed model, AU21. By employing full‐waveform inversion on data from 248 regional earthquakes and 1,102 seismographic stations, we iteratively refine AU21, resulting in 32,655 body‐wave and 35,897 surface wave measurements. AU21 reveals distinct shear‐wavespeed contrasts between the Phanerozoic eastern continental margin and the Precambrian western and central Australia, with the lithosphere‐asthenosphere boundary estimated at 250–300 km beneath central and western Australia. Notably, a unique weak radial anisotropy layer at 80–150 km is identified beneath the western Australian craton, possibly due to alignments of dipping layers or tilted symmetry axes of anisotropic minerals. Furthermore, slow anomalies extending to the uppermost lower mantle beneath the east of New Guinea, Tasmania, and the Tasman Sea indicate deep thermal activities, likely contributing to the formation of a low wavespeed band along the eastern Australian margin. In addition, our findings demonstrate the stagnant Tonga slab within the mantle transition zone and the Kermadec slab's penetration through the 660‐km discontinuity into the lower mantle.more » « less
-
Abstract The distribution of intermediate‐depth and deep intraslab earthquakes with respect to subducting slabs offers a unique insight into seismogenesis at high pressures and temperatures that should inhibit brittle failure. This study constrains the surface of the subducting Pacific Plate beneath Japan at depths between 100 and 380 km based on a previous continental‐scale adjoint tomography model. Earthquake distributions relative to the slab surface reveal double seismic zones located within the top 60 km of the Pacific Plate. Thermal modeling suggests that the lower‐plane seismicity corresponds to temperatures between 400 and 900 °C. The seismogenic pressure and temperature conditions correlate approximately with the conditions of dehydration reactions of several hydrous minerals, that is, antigorite (serpentine) and chlorite at depths between 100 and 200 km and phase A at greater depths between 200 and 380 km. These correlations indicate that at these depths water released from dehydration processes may facilitate triggering slab mantle earthquakes.more » « less