skip to main content


Title: Mantle thermochemical variations beneath the continental United States through petrologic interpretation of seismic tomography
The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.  more » « less
Award ID(s):
1952642
NSF-PAR ID:
10389593
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Hans Thybo
Date Published:
Journal Name:
Earth and planetary science letters
ISSN:
0012-821X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Stagnant-lid convection, where subduction and surface plate motion is absent, is common among the rocky planets and moons in our solar system, and likely among rocky exoplanets as well. How stagnant-lid planets thermally evolve is an important issue, dictating not just their interior evolution but also the evolution of their atmospheres via volcanic degassing. On stagnant-lid planets, the crust is not recycled by subduction and can potentially grow thick enough to significantly impact convection beneath the stagnant lid. We perform numerical models of stagnant-lid convection to determine new scaling laws for convective heat flux that specifically account for the presence of a buoyant crustal layer. We systematically vary the crustal layer thickness, crustal layer density, Rayleigh number and Frank–Kamenetskii parameter for viscosity to map out system behaviour and determine the new scaling laws. We find two end-member regimes of behaviour: a ‘thin crust limit’, where convection is largely unaffected by the presence of the crust, and the thickness of the lithosphere is approximately the same as it would be if the crust were absent; and a ‘thick crust limit’, where the crustal thickness itself determines the lithospheric thickness and heat flux. Scaling laws for both limits are developed and fit the numerical model results well. Applying these scaling laws to rocky stagnant-lid planets, we find that the crustal thickness needed for convection to enter the thick crust limit decreases with increasing mantle temperature and decreasing mantle reference viscosity. Moreover, if crustal thickness is limited by the formation of dense eclogite, and foundering of this dense lower crust, then smaller planets are more likely to enter the thick crust limit because their crusts can grow thicker before reaching the pressure where eclogite forms. When convection is in the thick crust limit, mantle heat flux is suppressed. As a result, mantle temperatures can be elevated by 100 s of degrees K for up to a few Gyr in comparison to a planet with a thin crust. Whether convection enters the thick crust limit during a planet’s thermal evolution also depends on the initial mantle temperature, so a thick, buoyant crust additionally acts to preserve the influence of initial conditions on stagnant-lid planets for far longer than previous thermal evolution models, which ignore the effects of a thick crust, have found. 
    more » « less
  2. We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice- and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (∼ +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (∼ −1%) characterize the western part of the RSE over a ∼500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (∼ −1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of ±0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100◦C. These temperature variations could lead to differences in surface heat flow of ∼ ±10 mW/m2 and mantle viscosity of 102 Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment. 
    more » « less
  3. Abstract

    Although seismic velocity and electrical conductivity are both sensitive to temperature, thermal lithosphere properties are derived almost exclusively from seismic data because conductivity is often too strongly affected by minor highly conductive phases to be a reliable indicator of temperature. However, in certain circumstances, electrical observations can provide strong constraints on mantle temperatures. In the southeastern United States (SEUS), magnetotelluric (MT) data require high resistivity values (>300 Ωm) to at least 200‐km depth. As dry mantle mineral conduction laws provide an upper bound on temperature for an observed resistivity value, the only interpretation is that lithospheric temperatures (<1330 °C) persist to 200 km. However, seismic tomography shows that velocities in this region are generally slightly slow with respect to references models; this observation has led to a view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. We show that MT and seismic (tomography, attenuation, receiver function) results are consistent with thick (~200 km), coherent thermal lithosphere in this region. Reduced seismic velocities (relative to reference models) can be explained by considering the effect of finite grain size (anelasticity). Calculated velocity as a function of temperature is overall slower when including anelastic effects, even at reasonable grain sizes of 1 mm to 1 cm; this permits mantle temperatures that are colder than would typically be inferred. We argue for a geodynamic scenario in which the present thermal lithosphere in the SEUS formed in association with the Central Atlantic Magmatic Province and has subsequently survived intact for ~200 Ma.

     
    more » « less
  4. null (Ed.)
    Abstract The deployment of seismic stations and the development of ambient noise tomography and new analysis methods provide an opportunity for higher resolution imaging of Antarctica. Here we review recent seismic structure models and describe their implications for the dynamics and history of the Antarctic upper mantle. Results show that most of East Antarctica is underlain by continental lithosphere to depths of ∼ 200 km. The thickest lithosphere is found in a band 500-1000 km west of the Transantarctic Mountains, representing the continuation of cratonic lithosphere with Australian affinity beneath the ice. Dronning Maud Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic lithospheric disruption. The Transantarctic Mountains mark a sharp boundary between cratonic lithosphere and the warmer upper mantle of West Antarctica. In the Southern Transantarctic Mountains, cratonic lithosphere has been replaced by warm asthenosphere, giving rise to Cenozoic volcanism and an elevated mountainous region. The Marie Byrd Land volcanic dome is underlain by slow seismic velocities extending through the transition zone, consistent with a mantle plume. Slow velocity anomalies beneath the coast from the Amundsen Sea Embayment to the Antarctic Peninsula likely result from upwelling of warm asthenosphere during subduction of the Antarctic-Phoenix spreading center. 
    more » « less
  5. Abstract

    The distribution of intermediate‐depth and deep intraslab earthquakes with respect to subducting slabs offers a unique insight into seismogenesis at high pressures and temperatures that should inhibit brittle failure. This study constrains the surface of the subducting Pacific Plate beneath Japan at depths between 100 and 380 km based on a previous continental‐scale adjoint tomography model. Earthquake distributions relative to the slab surface reveal double seismic zones located within the top 60 km of the Pacific Plate. Thermal modeling suggests that the lower‐plane seismicity corresponds to temperatures between 400 and 900 °C. The seismogenic pressure and temperature conditions correlate approximately with the conditions of dehydration reactions of several hydrous minerals, that is, antigorite (serpentine) and chlorite at depths between 100 and 200 km and phase A at greater depths between 200 and 380 km. These correlations indicate that at these depths water released from dehydration processes may facilitate triggering slab mantle earthquakes.

     
    more » « less