skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesizing Seemingly Contradictory Seismic and Magnetotelluric Observations in the Southeastern United States to Image Physical Properties of the Lithosphere
Abstract Although seismic velocity and electrical conductivity are both sensitive to temperature, thermal lithosphere properties are derived almost exclusively from seismic data because conductivity is often too strongly affected by minor highly conductive phases to be a reliable indicator of temperature. However, in certain circumstances, electrical observations can provide strong constraints on mantle temperatures. In the southeastern United States (SEUS), magnetotelluric (MT) data require high resistivity values (>300 Ωm) to at least 200‐km depth. As dry mantle mineral conduction laws provide an upper bound on temperature for an observed resistivity value, the only interpretation is that lithospheric temperatures (<1330 °C) persist to 200 km. However, seismic tomography shows that velocities in this region are generally slightly slow with respect to references models; this observation has led to a view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. We show that MT and seismic (tomography, attenuation, receiver function) results are consistent with thick (~200 km), coherent thermal lithosphere in this region. Reduced seismic velocities (relative to reference models) can be explained by considering the effect of finite grain size (anelasticity). Calculated velocity as a function of temperature is overall slower when including anelastic effects, even at reasonable grain sizes of 1 mm to 1 cm; this permits mantle temperatures that are colder than would typically be inferred. We argue for a geodynamic scenario in which the present thermal lithosphere in the SEUS formed in association with the Central Atlantic Magmatic Province and has subsequently survived intact for ~200 Ma.  more » « less
Award ID(s):
1820688
PAR ID:
10457097
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
20
Issue:
6
ISSN:
1525-2027
Page Range / eLocation ID:
p. 2606-2625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The deployment of seismic stations and the development of ambient noise tomography and new analysis methods provide an opportunity for higher resolution imaging of Antarctica. Here we review recent seismic structure models and describe their implications for the dynamics and history of the Antarctic upper mantle. Results show that most of East Antarctica is underlain by continental lithosphere to depths of ∼ 200 km. The thickest lithosphere is found in a band 500-1000 km west of the Transantarctic Mountains, representing the continuation of cratonic lithosphere with Australian affinity beneath the ice. Dronning Maud Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic lithospheric disruption. The Transantarctic Mountains mark a sharp boundary between cratonic lithosphere and the warmer upper mantle of West Antarctica. In the Southern Transantarctic Mountains, cratonic lithosphere has been replaced by warm asthenosphere, giving rise to Cenozoic volcanism and an elevated mountainous region. The Marie Byrd Land volcanic dome is underlain by slow seismic velocities extending through the transition zone, consistent with a mantle plume. Slow velocity anomalies beneath the coast from the Amundsen Sea Embayment to the Antarctic Peninsula likely result from upwelling of warm asthenosphere during subduction of the Antarctic-Phoenix spreading center. 
    more » « less
  2. We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice- and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (∼ +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (∼ −1%) characterize the western part of the RSE over a ∼500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (∼ −1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of ±0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100◦C. These temperature variations could lead to differences in surface heat flow of ∼ ±10 mW/m2 and mantle viscosity of 102 Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment. 
    more » « less
  3. Abstract The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover. 
    more » « less
  4. null (Ed.)
    ABSTRACT Seismic rays traveling just below the Moho provide insights into the thermal and compositional properties of the upper mantle and can be detected as Pn phases from regional earthquakes. Such phases are routinely identified in the continents, but in the oceans, detection of Pn phases is limited by a lack of long-term instrument deployments. We present estimates of upper-mantle velocity in the equatorial Atlantic Ocean from Pn arrivals beneath, and flanking, the Mid-Atlantic Ridge and across several transform faults. We analyzed waveforms from 50 earthquakes with magnitude Mw>3.5, recorded over 12 months in 2012–2013 by five autonomous hydrophones and a broadband seismograph located on the St. Peter and St. Paul archipelago. The resulting catalog of 152 ray paths allows us to resolve spatial variations in upper-mantle velocities, which are consistent with estimates from nearby wide-angle seismic experiments. We find relatively high velocities near the St. Paul transform system (∼8.4  km s−1), compared with lower ridge-parallel velocities (∼7.7  km s−1). Hence, this method is able to resolve ridge-transform scale velocity variations. Ray paths in the lithosphere younger than 10 Ma have mean velocities of 7.9±0.5  km s−1, which is slightly lower than those sampled in the lithosphere older than 20 Ma (8.1  km±0.3  s−1). There is no apparent systematic relationship between velocity and ray azimuth, which could be due to a thickened lithosphere or complex mantle upwelling, although uncertainties in our velocity estimates may obscure such patterns. We also do not find any correlation between Pn velocity and shear-wave speeds from the global SL2013sv model at depths <150  km. Our results demonstrate that data from long-term deployments of autonomous hydrophones can be used to obtain rare and insightful estimates of uppermost mantle velocities over hundreds of kilometers in otherwise inaccessible parts of the deep oceans. 
    more » « less
  5. null (Ed.)
    Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation. ▪  Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle. ▪  Tomographic images are the most important geophysical constraints on mantle circulation and evolution. 
    more » « less